Advertisement

Preclinical models of vascular inflammation

  • H. Andreas Kalmes
  • Christopher F. Toombs
Part of the Progress in Inflammation Research book series (PIR)

Conclusions

As inflammation is becoming increasingly viewed as a major and independent risk factor for cardiovascular disease, longstanding models of atherosclerosis and vascular injury must now be evaluated in the context of those pathological features that develop in response to inflammation. It is quite possible that our understanding of existing therapies is about to change dramatically, when the concept of vascular inflammation is overlaid onto the progression of cardiovascular disease. Perhaps an agent as old as aspirin with its bona fide benefit in cardiovascular disease will experience a shift in the attribution of its pharmacological effects, where the anti-inflammatory effects become equally important for cardiovascular disease as the effects on platelet cyclooxygenase.

For preclinical models to be of predictive value in human disease, there must be reasonable parity of biological pathways between man and lower vertebrates. Such may be the case with elements of biology that are highly homologous across mammalian species such as norepinehrine and adrenergic receptors or heparin and anticoagulation, where strong ties have been established between preclinical and clinical pharmacology. The inflammatory process and the immune system operate in a very complex system of activating and attenuating signals, many of which are biologicals that are only partially understood or have yet to be discovered. Further, the parity between the inflammation and immune pathways between man and preclinically tested species may not be as strong as in other areas of biology. While the contribution of inflammation to vascular disease has been recognized, our ability to thoroughly understand its contribution is currently hindered, but no doubt will improve as technology improves.

Keywords

Plaque Rupture Intimal Hyperplasia Arterial Injury Vulnerable Plaque Arterioscler Thromb Vasc Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ross R, Glomset J, Harker L (1977) Response to injury and atherogenesis. Am J Pathol 86(3): 675–684PubMedGoogle Scholar
  2. 2.
    Kraiss LW, Clowes AW (1997) Response of the arterial wall to injury and intimal hyperplasia. In: A Sidawy, B Sumpio, R DePalma (eds): The Basic Science of Vascular Disease. Armonk, New York, 289–317Google Scholar
  3. 3.
    Ross R (1999) Atherosclerosis — an inflammatory disease. N Engl J Med 340(2):115–126PubMedGoogle Scholar
  4. 4.
    Libby P (2001) Inflammation in atherosclerosis. Nature 420(6917): 868–874Google Scholar
  5. 5.
    Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 104(4): 503–516PubMedGoogle Scholar
  6. 6.
    Muller JE, Tofler GH (1992) Triggering and hourly variation of onset of arterial thrombosis. Ann Epidemiol 2(4): 393–405PubMedGoogle Scholar
  7. 7.
    Virmani R, Burke AP, Kolodgie FD, Farb A (2003) Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol 16(3): 267–272PubMedGoogle Scholar
  8. 8.
    Shah PK (2003) Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 41(4 Suppl S): 15S–22SPubMedGoogle Scholar
  9. 9.
    Galis ZS, Sukhova GK, Lark MW, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94(6): 2493–2503PubMedGoogle Scholar
  10. 10.
    Carmeliet P (2000) Proteinases in cardiovascular aneurysms and rupture: targets for therapy? J Clin Invest 105(11): 1519–1520PubMedGoogle Scholar
  11. 11.
    O’Keefe JH Jr, Conn RD, Lavie CJ, Bateman TM (1996) The new paradigm for coronary artery disease: altering risk factors, atherosclerotic plaques, and clinical prognosis. Mayo Clin Proc 71(10): 957–965PubMedGoogle Scholar
  12. 12.
    Shah PK (1996) Pathophysiology of plaque rupture and the concept of plaque stabilization. Cardiol Clin 14(1): 17–29PubMedGoogle Scholar
  13. 13.
    MacIsaac AI, Thomas JD, Topol EJ (1993) Toward the quiescent coronary plaque. J Am Coll Cardiol 22(4): 1228–1241PubMedGoogle Scholar
  14. 14.
    Forrester JS (2002) Prevention of plaque rupture: a new paradigm of therapy. Ann Intern Med 137(10): 823–833PubMedGoogle Scholar
  15. 15.
    Ambrose JA, Martinez EE (2002) A new paradigm for plaque stabilization. Circulation 105(16): 2000–2004PubMedGoogle Scholar
  16. 16.
    Ross R (1995) Cell biology of atherosclerosis. Annu Rev Physiol 57: 791–804PubMedGoogle Scholar
  17. 17.
    Casscells W, Hathorn B, David M, Krabach T, Vaughn WK, McAllister HA, Bearman G, Willerson JT (1996) Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 347(9013):1447–1451PubMedGoogle Scholar
  18. 18.
    Stefanadis C, Diamantopoulos L, Vlachopoulos C, Tsiamis E, Dernellis J, Toutouzas K, Stefanadi E, Toutouzas P (1999) Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter. Circulation 99(15): 1965–1971PubMedGoogle Scholar
  19. 19.
    Liuzzo G, Kopecky SL, Frye RL, O’Fallon WM, Maseri A, Goronzy JJ, Weyand CM (1999) Perturbation of the T-cell repertoire in patients with unstable angina. Circulation 100(21): 2135–2139PubMedGoogle Scholar
  20. 20.
    Nakajima T, Schulte S, Warrington KJ, Kopecky SL, Frye RL, Goronzy JJ, Weyand CM (2002) T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation 105(5): 570–575PubMedGoogle Scholar
  21. 21.
    Madjid M, Awan I, Willerson JT, Casscells SW (2004) Leukocyte count and coronary heart disease: implications for risk assessment. J Am Coll Cardiol 44(10):1945–1956PubMedGoogle Scholar
  22. 22.
    Bisoendial RJ, Kastelein JJ, Levels JH, Zwaginga JJ, van den Bogaard B, Reitsma PH, Meijers JC, Hartman D, Levi M, Stroes ES (2005) Activation of inflammation and coagulation after infusion of C-reactive protein in humans. Circ Res 96(7): 714–716PubMedGoogle Scholar
  23. 23.
    van den Berg CW, Taylor KE (2005) Letter in response to Bisoendial et al: “Activation of inflammation and coagulation after infusion of C-reactive protein in humans”. Circ Res 97(1): e2PubMedGoogle Scholar
  24. 24.
    Jawien J, Nastalek P, Korbut R (2004) Mouse models of experimental atherosclerosis. J Physiol Pharmacol 55(3): 503–517PubMedGoogle Scholar
  25. 25.
    Yanni AE (2004) The laboratory rabbit: an animal model of atherosclerosis research. Lab Anim 38(3): 246–256PubMedGoogle Scholar
  26. 26.
    Meir KS, Leitersdorf E (2004) Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24(6): 1006–1014PubMedGoogle Scholar
  27. 27.
    Dal Canto AJ, Virgin HW (2000) Animal models of infection-mediated vasculitis: implications for human disease. Int J Cardiol 75(Suppl 1): S37–45; discussion S47–52Google Scholar
  28. 28.
    Moyer CF, Reinisch CL (1989) Vasculitis in MRL/1 pr mice: model of cell-mediated autoimmunity. Toxicol Pathol 17(1 Pt 2): 122–128PubMedGoogle Scholar
  29. 29.
    Stemerman MB, Spaet TH, Pitlick F, Cintron J, Lejnieks I, Tiell ML (1977) Intimal healing. The pattern of reendothelialization and intimal thickening. Am J Pathol 87(1):125–142PubMedGoogle Scholar
  30. 30.
    Clowes AW, Reidy MA, Clowes MM (1983) Mechanisms of stenosis after arterial injury. Lab Invest 49(2): 208–215PubMedGoogle Scholar
  31. 31.
    Jahnke T, Karbe U, Schafer FK, Bolte H, Heuer G, Rector L, Brossmann J, Heller M, Muller-Hulsbeck S (2005) Characterization of a new double-injury restenosis model in the rat aorta. J Endovasc Ther 12(3): 318–331PubMedGoogle Scholar
  32. 32.
    Courtman DW, Schwartz SM, Hart CE (1998) Sequential injury of the rabbit abdominal aorta induces intramural coagulation and luminal narrowing independent of intimal mass: extrinsic pathway inhibition eliminates luminal narrowing. Circ Res 82(9):996–1006PubMedGoogle Scholar
  33. 33.
    De Leon H, Ollerenshaw JD, Griendling KK, Wilcox JN (2001) Adventitial cells do not contribute to neointimal mass after balloon angioplasty of the rat common carotid artery. Circulation 104(14): 1591–1593PubMedGoogle Scholar
  34. 34.
    Wilcox JN, Scott NA (1996) Potential role of the adventitia in arteritis and atherosclerosis. Int J Cardiol 54(Suppl): S21–35PubMedGoogle Scholar
  35. 35.
    Wilcox JN, Cipolla GD, Martin FH, Simonet L, Dunn B, Ross CE, Scott NA (1997) Contribution of adventitial myofibroblasts to vascular remodeling and lesion formation after experimental angioplasty in pig coronary arteries. Ann NY Acad Sci 811: 437–447PubMedGoogle Scholar
  36. 36.
    Wilcox JN, Waksman R, King SB, Scott NA (1996) The role of the adventitia in the arterial response to angioplasty: the effect of intravascular radiation. Int J Radiat Oncol Biol Phys 36(4): 789–796PubMedGoogle Scholar
  37. 37.
    Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN (1996) Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 93(12): 2178–2187PubMedGoogle Scholar
  38. 38.
    Wilcox JN, Okamoto EI, Nakahara KI, Vinten-Johansen J (2001) Perivascular responses after angioplasty which may contribute to postangioplasty restenosis: a role for circulating myofibroblast precursors? Ann NY Acad Sci 947: 68–90; discussion 90–92PubMedGoogle Scholar
  39. 39.
    Clowes AW, Reidy MA, Clowes MM (1983) Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest 49(3): 327–333PubMedGoogle Scholar
  40. 40.
    Clowes AW, Clowes MM, Fingerle J, Reidy MA (1989) Kinetics of cellular proliferation after arterial injury. V. Role of acute distension in the induction of smooth muscle proliferation. Lab Invest 60(3): 360–364PubMedGoogle Scholar
  41. 41.
    Fingerle J, Au YP, Clowes AW, Reidy MA (1990) Intimal lesion formation in rat carotid arteries after endothelial denudation in absence of medial injury. Arteriosclerosis 10(6):1082–1087PubMedGoogle Scholar
  42. 42.
    Lindner V, Fingerle J, Reidy MA (1993) Mouse model of arterial injury. Circ Res 73(5):792–796PubMedGoogle Scholar
  43. 43.
    Roque M, Fallon JT, Badimon JJ, Zhang WX, Taubman MB, Reis ED (2000) Mouse model of femoral artery denudation injury associated with the rapid accumulation of adhesion molecules on the luminal surface and recruitment of neutrophils. Arterioscler Thromb Vasc Biol 20(2): 335–342PubMedGoogle Scholar
  44. 44.
    Fishman JA, Ryan GB, Karnovsky MJ (1975) Endothelial regeneration in the rat carotid artery and the significance of endothelial denudation in the pathogenesis of myointimal thickening. Lab Invest 32(3): 339–351PubMedGoogle Scholar
  45. 45.
    Chen Z, Sakuma M, Zago AC, Zhang X, Shi C, Leng L, Mizue Y, Bucala R, Simon D (2004) Evidence for a role of macrophage migration inhibitory factor in vascular disease. Arterioscler Thromb Vasc Biol 24(4): 709–714PubMedGoogle Scholar
  46. 46.
    Kuhel DG, Zhu B, Witte DP, Hui DY (2002) Distinction in genetic determinants for injury-induced neointimal hyperplasia and diet-induced atherosclerosis in inbred mice. Arterioscler Thromb Vasc Biol 22(6): 955–960PubMedGoogle Scholar
  47. 47.
    Harmon KJ, Couper LL, Lindner V (2000) Strain-dependent vascular remodeling phenotypes in inbred mice. Am J Pathol 156(5): 1741–1748PubMedGoogle Scholar
  48. 48.
    Manka DR, Wiegman P, Din S, Sanders JM, Green SA, Gimple LW, Ragosta M, Powers ER, Ley K, Sarembock IJ (1999) Arterial injury increases expression of inflammatory adhesion molecules in the carotid arteries of apolipoprotein-E-deficient mice. J Vasc Res 36(5): 372–378PubMedGoogle Scholar
  49. 49.
    Manka D, Collins RG, Ley K, Beaudet AL, Sarembock IJ (2001) Absence of p-selectin, but not intercellular adhesion molecule-1, attenuates neointimal growth after arterial injury in apolipoprotein e-deficient mice. Circulation 103(7): 1000–1005PubMedGoogle Scholar
  50. 50.
    Quarck R, De Geest B, Stengel D, Mertens A, Lox M, Theilmeier G, Michiels C, Raes M, Bult H, Collen D et al (2001) Adenovirus-mediated gene transfer of human platelet-activating factor-acetylhydrolase prevents injury-induced neointima formation and reduces spontaneous atherosclerosis in apolipoprotein E-deficient mice. Circulation 103(20): 2495–2500PubMedGoogle Scholar
  51. 51.
    Schober A, Bernhagen J, Thiele M, Zeiffer U, Knarren S, Roller M, Bucala R, Weber C (2004) Stabilization of atherosclerotic plaques by blockade of macrophage migration inhibitory factor after vascular injury in apolipoprotein E-deficient mice. Circulation 109(3): 380–385PubMedGoogle Scholar
  52. 52.
    Schober A, Zernecke A, Liehn EA, von Hundelshausen P, Knarren S, Kuziel WA, Weber C (2004) Crucial role of the CCL2/CCR2 axis in neointimal hyperplasia after arterial injury in hyperlipidemic mice involves early monocyte recruitment and CCL2 presentation on platelets. Circ Res 95(11): 1125–1133PubMedGoogle Scholar
  53. 53.
    Shi W, Pei H, Fischer JJ, James JC, Angle JF, Matsumoto AH, Helm GA, Sarembock IJ (2004) Neointimal formation in two apolipoprotein E-deficient mouse strains with different atherosclerosis susceptibility. J Lipid Res 45(11): 2008–2014PubMedGoogle Scholar
  54. 54.
    Schulze PC, de Keulenaer GW, Kassik KA, Takahashi T, Chen Z, Simon DI, Lee RT (2003) Biomechanically induced gene iex-1 inhibits vascular smooth muscle cell proliferation and neointima formation. Circ Res 93(12): 1210–1217PubMedGoogle Scholar
  55. 55.
    Reis ED, Roque M, Dansky H, Fallon JT, Badimon JJ, Cordon-Cardo C, Shiff SJ, Fisher EA (2000) Sulindac inhibits neointimal formation after arterial injury in wild-type and apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 97(23): 12764–12769PubMedGoogle Scholar
  56. 56.
    Kumar A, Lindne V (1997), Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler Thromb Vasc Biol 17(10): 2238–2244PubMedGoogle Scholar
  57. 57.
    Berguer R, Higgins RF, Reddy DJ (1980) Intimal hyperplasia. An experimental study. Arch Surg 115(3): 332–335PubMedGoogle Scholar
  58. 58.
    Dobrin PB, Littooy FN, Endean ED (1989) Mechanical factors predisposing to intimal hyperplasia and medial thickening in autogenous vein grafts. Surgery 105(3): 393–400PubMedGoogle Scholar
  59. 59.
    Kraiss LW, Kirkman TR, Kohler TR, Zierler B, Clowes AW (1991) Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts. Arterioscler Thromb 11(6): 1844–1852PubMedGoogle Scholar
  60. 60.
    Kohler TR, Kirkman TR, Kraiss LW, Zierler BK, Clowes AW (1991) Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts. Circ Res 69(6):1557–1565PubMedGoogle Scholar
  61. 61.
    Rectenwald JE, Moldawer LL, Huber TS, Seeger JM, Ozaki CK (2000) Direct evidence for cytokine involvement in neointimal hyperplasia. Circulation 102(14): 1697–1702PubMedGoogle Scholar
  62. 62.
    Korshunov VA, Berk BC (2003) Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening. Arterioscler Thromb Vasc Biol 23(12):2185–2191PubMedGoogle Scholar
  63. 63.
    Sullivan CJ, Hoying JB (2002) Flow-dependent remodeling in the carotid artery of fibroblast growth factor-2 knockout mice. Arterioscler Thromb Vasc Biol 22(7):1100–1105PubMedGoogle Scholar
  64. 64.
    Dimayuga P, Zhu J, Oguchi S, Chyu KY, Xu XO, Yano J, Shah PK, Nilsson J, Cercek B (1999) Reconstituted HDL containing human apolipoprotein A-1 reduces VCAM-1 expression and neointima formation following periadventitial cuff-induced carotid injury in apoE null mice. Biochem Biophys Res Commun 264(2): 465–468PubMedGoogle Scholar
  65. 65.
    von der Thusen JH, van Berkel TJ, Biessen EA (2001) Induction of rapid atherogenesis by perivascular carotid collar placement in apolipoprotein E-deficient and low-density lipoprotein receptor-deficient mice. Circulation 103(8): 1164–1170PubMedGoogle Scholar
  66. 66.
    Wu L, Iwai M, Nakagami H, Li Z, Chen R, Suzuki J, Akishita M, de Gasparo M, Horiuchi M (2001) Roles of angiotensin II type 2 receptor stimulation associated with selective angiotensin II type 1 receptor blockade with valsartan in the improvement of inflammation-induced vascular injury. Circulation 104(22): 2716–2721PubMedGoogle Scholar
  67. 67.
    Liu HW, Iwai M, Takeda-Matsubara Y, Wu L, Li JM, Okumura M, Cui TX, Horiuchi M (2002) Effect of estrogen and AT1 receptor blocker on neointima formation. Hypertension 40(4): 451–457; discussion 448–450PubMedGoogle Scholar
  68. 68.
    Vink A, Schoneveld AH, van der Meer JJ, van Middelaar BJ, Sluijter JP, Smeets MB, Quax PH, Lim SK, Borst C, Pasterkamp G, de Kleijn DP (2002) In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 106(15):1985–1990PubMedGoogle Scholar
  69. 69.
    Chyu KY, Dimayuga P, Zhu J, Nilsson J, Kaul S, Shah PK, Cercek B (1999) Decreased neointimal thickening after arterial wall injury in inducible nitric oxide synthase knockout mice. Circ Res 85(12): 1192–1198PubMedGoogle Scholar
  70. 70.
    Moroi M, Izumida T, Morita T, Tatebe J, Ishii C, Imai T, Yagi S, Yamaguchi T, Katayama S (2003) Effect of p53 deficiency on external vascular cuff-induced neointima formation. Circ J 67(2): 149–153PubMedGoogle Scholar
  71. 71.
    von der Thusen JH, van Vlijmen BJ, Hoeben RC, Kockx MM, Havekes LM, van Berkel TJ, Biessen EA (2002) Induction of atherosclerotic plaque rupture in apolipoprotein E-/-mice after adenovirus-mediated transfer of p53. Circulation 105(17): 2064–2070PubMedGoogle Scholar
  72. 72.
    von der Thusen JH, Kuiper J, Fekkes ML, de Vos P, van Berkel TJ, Biessen EA (2001) Attenuation of atherogenesis by systemic and local adenovirus-mediated gene transfer of interleukin-10 in LDLr-/- mice. FASEB J 15(14): 2730–2732Google Scholar
  73. 73.
    Patel SS, Thiagarajan R, Willerson JT, Yeh ET (1998) Inhibition of alpha4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoEdeficient mice. Circulation 97(1): 75–81PubMedGoogle Scholar
  74. 74.
    Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R (1994) ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler hromb 14(1): 133–140Google Scholar
  75. 75.
    Aicher A, Heeschen C, Mohaupt M, Cooke JP, Zeiher AM, Dimmeler S (2003) Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation 107(4): 604–611PubMedGoogle Scholar
  76. 76.
    Kim CJ, Khoo JC, Gillotte-Taylor K, Li A, Palinski W, Glass CK, Steinberg D (2000) Polymerase chain reaction-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tumor necrosis factor-alpha and interleukin-1 beta. Arterioscler Thromb Vasc Biol 20(8): 1976–1982PubMedGoogle Scholar
  77. 77.
    van Lenten BJ, Wagner AC, Anantharamaiah GM, Garber DW, Fishbein MC, Adhikary L, Nayak DP, Hama S, Navab M, Fogelman AM (2002) Influenza infection promotes macrophage traffic into arteries of mice that is prevented by D-4F, an apolipoprotein AI mimetic peptide. Circulation 106(9): 1127–1132PubMedGoogle Scholar
  78. 78.
    Navab M, Anantharamaiah GM, Reddy ST, van Lenten BJ, Hough G, Wagner A, Naka-mura K, Garber DW, Datta G, Segrest JP (2003) Human apolipoprotein AI mimetic peptides for the treatment of atherosclerosis. Curr Opin Investig Drugs 4(9): 1100–1104PubMedGoogle Scholar
  79. 79.
    Madjid M, Naghavi M, Malik BA, Litovsky S, Willerson JT, Casscells W (2002) Thermal detection of vulnerable plaque. Am J Cardiol 90(10C): 36L–39LPubMedGoogle Scholar
  80. 80.
    Verheye S, de Meyer GR, van Langenhove G, Knaapen MW, Kockx MM (2002) In vivo temperature heterogeneity of atherosclerotic plaques is determined by plaque composition. Circulation 105(13): 1596–1601PubMedGoogle Scholar
  81. 81.
    Pasterkamp G, Falk E (2000) Atherosclerotic plaque rupture: An overview. J Clin Basic Cardiol 3(2): 81–86Google Scholar
  82. 82.
    Rosenfeld ME, Polinsky P, Virmani R, Kauser K, Rubanyi G, Schwartz SM (2000) Advanced atherosclerotic lesions in the innominate artery of the ApoE knockout mouse. Arterioscler Thromb Vasc Biol 20(12): 2587–2592PubMedGoogle Scholar
  83. 83.
    Johnson JL, Jackson CL (2001) Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis 154(2): 399–406PubMedGoogle Scholar
  84. 84.
    Rekhter MD, Hicks GW, Brammer DW, Work CW, Kim JS, Gordon D, Keiser JA, Ryan MJ (1998) Animal model that mimics atherosclerotic plaque rupture. Circ Res 83(7): 705–713PubMedGoogle Scholar
  85. 85.
    Rekhter MD, Hicks GW, Brammer DW, Hallak H, Kindt E, Chen J, Rosebury WS, Anderson MK, Kuipers PJ, Ryan MJ (2000) Hypercholesterolemia causes mechanical weakening of rabbit atheroma: local collagen loss as a prerequisite of plaque rupture. Circ Res 86(1): 101–108PubMedGoogle Scholar
  86. 86.
    Rekhter M (2002) Vulnerable atherosclerotic plaque: emerging challenge for animal models. Curr Opin Cardiol 17(6): 626–632PubMedGoogle Scholar
  87. 87.
    Biasucci LM, Liuzzo G, Fantuzzi G, Caligiuri G, Rebuzzi AG, Ginnetti F, Dinarello CA, Maseri A (1999) Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in-hospital coronary events. Circulation 99(16): 2079–2084PubMedGoogle Scholar
  88. 88.
    Ridker PM, Rifai N, Pfeffer M, Sacks F, Lepage S, Braunwald E (2000) Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation 101(18): 2149–2153PubMedGoogle Scholar
  89. 89.
    Biasucci LM, Vitelli A, Liuzzo G, Altamura S, Caligiuri G, Monaco C, Rebuzzi AG, Ciliberto G, Maseri A (1996) Elevated levels of interleukin-6 in unstable angina. Circulation 94(5): 874–877PubMedGoogle Scholar
  90. 90.
    Liuzzo G, Biasucci LM, Gallimore JR, Grillo RL, Rebuzzi AG, Pepys MB, Maseri A (1994) The prognostic value of C-reactive protein and serum amyloid a protein in severe unstable angina. N Engl J Med 331(7): 417–424PubMedGoogle Scholar
  91. 91.
    Andrassy M, Belov D, Harja E, Zou YS, Leitges M, Katus HA, Nawroth PP, Yan SD, Schmidt AM, Yan SF (2005) Central role of PKCbeta in neointimal expansion triggered by acute arterial injury. Circ Res 96(4): 476–483PubMedGoogle Scholar
  92. 92.
    Hutter R, Sauter BV, Reis ED, Roque M, Vorchheimer D, Carrick FE, Fallon JT, Fuster V, Badimon JJ (2003) Decreased reendothelialization and increased neointima formation with endostatin overexpression in a mouse model of arterial injury. Circulation 107(12):1658–1663PubMedGoogle Scholar
  93. 93.
    Hofmann CS, Sullivan CP, Jiang HY, Stone PJ, Toselli P, Reis ED, Chereshnev I, Schreiber BM, Sonenshein GE (2004) B-Myb represses vascular smooth muscle cell collagen gene expression and inhibits neointima formation after arterial injury. Arterioscler Thromb Vasc Biol 24(9): 1608–1613PubMedGoogle Scholar
  94. 94.
    Zhu B, Reardon CA, Getz GS, Hui DY (2002) Both apolipoprotein E and immune deficiency exacerbate neointimal hyperplasia after vascular injury in mice. Arterioscler Thromb Vasc Biol 22(3): 450–455PubMedGoogle Scholar
  95. 95.
    de Geest B, Zhao Z, Collen D, Holvoet P (1997) Effects of adenovirus-mediated human apo A-I gene transfer on neointima formation after endothelial denudation in apo Edeficient mice. Circulation 96(12): 4349–4356PubMedGoogle Scholar
  96. 96.
    Chen Z, Fukutomi T, Zago AC, Ehlers R, Detmers PA, Wright SD, Rogers C, Simon DI (2002) Simvastatin reduces neointimal thickening in low-density lipoprotein receptordeficient mice after experimental angioplasty without changing plasma lipids. Circulation 106(1): 20–23PubMedGoogle Scholar
  97. 97.
    Simon DI, Dhen Z, Seifert P, Edelman ER, Ballantyne CM, Rogers C (2000) Decreased neointimal formation in Mac-1(-/-) mice reveals a role for inflammation in vascular repair after angioplasty. J Clin Invest 105(3): 293–300PubMedGoogle Scholar
  98. 98.
    Kawasaki T, Dewerchin M, Lijnen HR, Vreys I, Vermylen J, Hoylaerts MF (2001) Mouse carotid artery ligation induces platelet-leukocyte-dependent luminal fibrin, required for neointima development. Circ Res 88(2): 159–166PubMedGoogle Scholar
  99. 99.
    Li Y, Minamino T, Tsukamoto O, Yujiri T, Shintani Y, Okada K, Nagamachi Y, Fujita M, Hirata A, Sanada S et al (2005) Ablation of MEK kinase 1 suppresses intimal hyperplasia by impairing smooth muscle cell migration and urokinase plasminogen activator expression in a mouse blood-flow cessation model. Circulation 111(13): 1672–1678PubMedGoogle Scholar
  100. 100.
    Jonsson-Rylander AC, Nilsson T, Fritsche-Danielson R, Hammarstrom A, Behrendt M, Andersson JO, Lindgren K, Andersson AK, Wallbrandt P, Rosengren B et al (2005) Role of ADAMTS-1 in atherosclerosis: remodeling of carotid artery, immunohistochemistry, and proteolysis of versican. Arterioscler Thromb Vasc Biol 25(1): 180–185PubMedGoogle Scholar
  101. 101.
    Hassan GS, Jasmin JF, Schubert W, Frank PG, Lisanti MP (2004) Caveolin-1 deficiency stimulates neointima formation during vascular injury. Biochemistry 43(26):8312–8321PubMedGoogle Scholar
  102. 102.
    Khatri JJ, Johnson C, Magid R, Lessner SM, Laude KM, Dikalov SI, Harrison DG, Sung HJ, Rong Y, Galis ZS (2004) Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation 109(4): 520–525PubMedGoogle Scholar
  103. 103.
    Tran PK, Tran-Lundmark K, Soininen R, Tryggvason K, Thyberg J, Hedin U (2004) Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ Res 94(4): 550–558PubMedGoogle Scholar
  104. 104.
    Kuzuya M, Kanda S, Sasaki T, Tamaya-Mori N, Cheng XW, Itoh T, Itohara S, Iguchi A (2003) Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation 108(11): 1375–1381PubMedGoogle Scholar
  105. 105.
    Singh R, Pan S, Mueske CS, Witt TA, Kleppe LS, Peterson TE, Caplice NM, Simari RD (2003) Tissue factor pathway inhibitor deficiency enhances neointimal proliferation and formation in a murine model of vascular remodelling. Thromb Haemost 89(4): 747–751PubMedGoogle Scholar
  106. 106.
    Singh R, Pan S, Mueske CS, Witt T, Kleppe LS, Peterson TE, Slobodova A, Chang JY, Caplice NM, Simari RD (2001) Role for tissue factor pathway in murine model of vascular remodeling. Circ Res 89(1): 71–76PubMedGoogle Scholar
  107. 107.
    Qin F, Impeduglia T, Schaffer P, Dardik H (2003) Overexpression of von Willebrand factor is an independent risk factor for pathogenesis of intimal hyperplasia: preliminary studies. J Vasc Surg 37(2): 433–439PubMedGoogle Scholar
  108. 108.
    Squadrito F, Deodato B, Bova A, Marini H, Saporito F, Calo M, Giacca M, Minutoli L, Venuti FS, Caputi AP, Altavilla D (2003) Crucial role of nuclear factor-kappaB in neointimal hyperplasia of the mouse carotid artery after interruption of blood flow. Atherosclerosis 166(2): 233–242PubMedGoogle Scholar
  109. 109.
    Galis ZS, Johnson C, Godin D, Magid R, Shipley JM, Senior RM, Ivan E (2002) Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res 91(9): 852–859PubMedGoogle Scholar
  110. 110.
    Cho A, Reidy MA (2002) Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res 91(9):845–851PubMedGoogle Scholar
  111. 111.
    Murakoshi N, Miyauchi T, Kakinuma Y, Ohuchi T, Goto K, Yanagisawa M, Yamaguchi I (2002) Vascular endothelin-B receptor system in vivo plays a favorable inhibitory role in vascular remodeling after injury revealed by endothelin-B receptor-knockout mice. Circulation 106(15) 1991–1998PubMedGoogle Scholar
  112. 112.
    Kumar A, Hoover JL, Simmons CA, Lindner V, Shebuski RJ (1997) Remodeling and neointimal formation in the carotid artery of normal and P-selectin-deficient mice. Circulation 96(12): 4333–4342PubMedGoogle Scholar
  113. 113.
    Bryant SR, Bjercke RJ, Erichsen DA, Rege A, Lindner V (1999) Vascular remodeling in response to altered blood flow is mediated by fibroblast growth factor-2. Circ Res 84(3):323–328PubMedGoogle Scholar
  114. 114.
    Bot I, von der Thusen JH, Donners MM, Lucas A, Fekkes ML, de Jager SC, Kuiper J, Daemen MJ, van Berkel TJ, Heeneman S, Biessen EA (2003) Serine protease inhibitor Serp-1 strongly impairs atherosclerotic lesion formation and induces a stable plaque phenotype in ApoE-/-mice. Circ Res 93(5): 464–471PubMedGoogle Scholar
  115. 115.
    Oguchi S, Dimayuga P, Zhu J, Chyu KY, Yano J, Shah PK, Nilsson J, Cercek B (2000) Monoclonal antibody against vascular cell adhesion molecule-1 inhibits neointimal formation after periadventitial carotid artery injury in genetically hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 20(7): 1729–1736PubMedGoogle Scholar
  116. 116.
    de Nooijer R, von der Thusen JH, Verkleij CJ, Kuiper J, Jukema JW, van der Wall EE, van Berkel JC, Biessen EA (2004) Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E-deficient mice. Arterioscler Thromb Vasc Biol 24(12): 2313–2319PubMedGoogle Scholar
  117. 117.
    Lardenoye JH, Delsing DJ, de Vries MR, Deckers MM, Princen HM, Havekes LM, van Hinsbergh VW, van Bockel JH, Quax PH (2000) Accelerated atherosclerosis by placement of a perivascular cuff and a cholesterol-rich diet in ApoE*3Leiden transgenic mice. Circ Res 87(3): 248–253PubMedGoogle Scholar
  118. 118.
    Imai Y, Shindo T, Maemura K, Sata M, Saito Y, Kurihara Y, Akishita M, Osuga J, Ishibashi S, Tobe K et al (2002) Resistance to neointimal hyperplasia and fatty streak formation in mice with adrenomedullin overexpression. Arterioscler Thromb Vasc Biol 22(8): 1310–1315PubMedGoogle Scholar
  119. 119.
    Isoda K, Nishikawa K, Kamezawa Y, Yoshida M, Kusuhara M, Moroi M, Tada N, Ohsuzu F (2002) Osteopontin plays an important role in the development of medial thickening and neointimal formation. Circ Res 91(1): 77–82PubMedGoogle Scholar
  120. 120.
    Chen X, Li Z, Li J (2002) Anti-inflammatory effect of cerivastatin in vascular injury independent of serum cholesterol and blood pressure lowering effects in mouse model. Chin J Traumatol 5(5): 294–298PubMedGoogle Scholar
  121. 121.
    Isoda K, Shiigai M, Ishigami N, Matsuki T, Horai R, Nishikawa K, Kusuhara M, Nishida Y, Iwakura Y, Ohsuzu F (2003) Deficiency of interleukin-1 receptor antagonist promotes neointimal formation after injury. Circulation 108(5): 516–518PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • H. Andreas Kalmes
    • 1
  • Christopher F. Toombs
    • 1
  1. 1.Department of Inflammation ResearchAmgen Washington Inc.SeattleUSA

Personalised recommendations