Skip to main content

Animal models of inflammatory bowel disease

  • Chapter
Book cover In Vivo Models of Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

Concluding remarks

Experience in IBD animal modeling has shown us that an ideal animal model cannot be achieved, as the human disease is chronic, unrelenting with multiple remissions and relapses. Despite this shortcoming, the number of animal models of inflammation that relatively mimic IBD either naturally, spontaneously or phenotypically through experimental physical, immunological or genetic manipulations has significantly increased. Many of these models have helped us dissect and substantially advance our understandings of the pathogenesis of IBD, at the same time as providing an unprecedented opportunity for identifying targets for therapeutic intervention and prevention strategies. Since so many experimental animal models are now available, investigators must take into consideration the species, strains, substrains, the microenvironment in which they live and the mediators involved in each of these models, for application to preclinical testing to manipulate the immune system or to develop vaccines or gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Price AB (1978) Overlap in the spectrum of non-specific inflammatory bowel disease “colitis indeterminate”. J Clin Pathol 31: 567–577

    PubMed  CAS  Google Scholar 

  2. Hay JW, Hay AR (1992) Inflammatory bowel disease: costs of illness. J Clin Gastroenterol 14: 309–317

    PubMed  CAS  Google Scholar 

  3. Fiocchi C (1997) Intestinal inflammation: a complex interplay of immune and nonimmune cell interactions. Am J Physiol 273: G769–G775

    PubMed  CAS  Google Scholar 

  4. Plevy SE, Landers CJ, Carramanzana NM, Deem RL, Shealy D, Targan SR (1997) A role for TNF-α and mucosal T helper 1 cytokines in the pathogenesis of Crohn’s disease. J Immunol 159: 6276–6282

    PubMed  CAS  Google Scholar 

  5. Fuss IJ, Neurath M, Boirivant M, Klein JS, de la Motte C, Strong SA, Fiocchi C, Strober W (1996) Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IL-5. J Immunol 157: 1261–1270

    PubMed  CAS  Google Scholar 

  6. Monteleone G, Biancone L, Marasco R, Morrone G, Marasco O, Luzza F, Pallone F (1997) Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells. Gastroenterology 112: 1169–1178

    PubMed  CAS  Google Scholar 

  7. Sandborn W (2004) Advances in biologic therapy for IBD: An expert interview with William Sandborn. Medscape Gastroenterology. www.medscape.com/viewarticle/477684

    Google Scholar 

  8. Pfeiffer CJ (ed.) (1985) Animal models of intestinal disease. CRC Press, Boca Raton

    Google Scholar 

  9. Sundberg JP, Elson CO, Bedigian CD, Berkenmeir EH (1994) Spontaneous heritable colitis in a new substrain of C3H/HeJmice. Gastroenterology 107: 1726–1735

    PubMed  CAS  Google Scholar 

  10. Fort MM, Mozaffarian A, Stover AG, Corrreia J, Ulevitch RJ, Persing DH, Bielfeldt-Ohmana H, Probst P, Jeffery E, Fling SP, Hershberg RM (2005) A synthetic TLR4 antagonist has an antiinflammatory effects in two murine models of inflammatory bowel disease. J Immunol 174: 6416–6423

    PubMed  CAS  Google Scholar 

  11. Madara JL, Podolsky DK, King NW, Sehgal PK, Moore R, Winter HS (1985) Characterization of spontaneous colitis in cotton top tamarin (Sanguinas oedipus) and its response to sulfasalzine. Gastroenterology 88: 13–19

    PubMed  CAS  Google Scholar 

  12. Chalifoux, LV, Bronson RT (1981) Colonic adenocarcinoma associated with chronic ulcerative colitis in cotton topped marmosets (Sanguinas oedipus). Gastroenterology 80: 942–946

    PubMed  CAS  Google Scholar 

  13. Das KM, Squillante L, Henke M, Clapp N (1990) The presence of circulating antibodies in cotton top tamarins (CTT) with spontaneous colitis against an epitope on MR 40,000 protein shared by human and CTT colon epithelial cells. Gastroenterology 98: A468

    Google Scholar 

  14. Stonerook MJ, Weiss HS, Rodriguez JV, Hernandez JI, Peck PC, Wood JD (1994) Temperature-metabolism relations in the cotton-top tamarin (Sanguinas oedipus) model for ulcerative colitis. J Med Primatol 23: 16–22

    PubMed  CAS  Google Scholar 

  15. Watkins DI, Hodi FS, Levin NL (1988) A primate species with limited major histocompatibility complex class I polymorphism. Proc Natl Acad Sci USA 85: 7714

    PubMed  CAS  Google Scholar 

  16. Clapp N, Henke M, Hansard R, Carson R, Walsh R, Widomski D, Anglin C, Fretland D (1993) Inflammatory mediator changes in cotton top tamarins (CTT) after SC-41930 anti-colitic therapy. Agents Actions 39: C8–10

    PubMed  CAS  Google Scholar 

  17. Kosiewicz MM, Krishnan A, Shah M, Bentz M, Matusmoto S, Cominelli F (1998) Characterization of a new spontaneous murine model of inflammatory bowel disease. Gastroenterology 114: G4143

    Google Scholar 

  18. Strober W, Nakamura K, Kitani A (2001) The SAMP1/Yit mouse: another step closer to modeling human inflammatory bowel disease. J Clin Invest 107: 667–670

    PubMed  CAS  Google Scholar 

  19. Mizoguchi A, Mizoguchi E, Bhan AK (1999) The critical role of interleukin 4 but not interferon gamma in the pathogenesis of colitis in T-cell receptors alpha mutant mice. Gastroenterology 116: G3637

    Google Scholar 

  20. Strober W, Fuss IJ, Blumberg R (2002) The immunology of mucosal models of inflammation. Annu Rev Immunol 20: 495–549

    PubMed  CAS  Google Scholar 

  21. Hodgson HJF, Potter BJ, Skinner J, Jewell DP (1978) Immune complex mediated colitis in rabbits. Gut 19: 225–232

    PubMed  CAS  Google Scholar 

  22. Mee AS, McLaughlin JE, Hodgson HGF, Jewell JP (1979) Chronic immune colitis in rabbits. Gut 20: 1–5

    PubMed  CAS  Google Scholar 

  23. Axelsson LG, Ahlstedt S (1990) Characteristics of immune-complex induced chronic experimental colitis in rats with a therapeutic effect of sulfasalazine. Scan J Gastroenterol 25: 203–209

    CAS  Google Scholar 

  24. Cominelli F, Nast CC, Clark BD, Schindler R, Lierena R, Eysselein VE, Thompson RC (1990) Interleukin 1 (IL-1) gene expression, synthesis, and effect of specific IL-1 receptor blockade in rabbit immune complex colitis. J Clin Invest 86: 972–980

    PubMed  CAS  Google Scholar 

  25. Cominelli F, Nast CC, Llerena R, Dinarello CA, Zipser RD (1990) Interleukin I suppresses inflammation in rabbit colitis. Mediation by endogenous prostaglandins. J Clin Invest 85: 582–586

    PubMed  CAS  Google Scholar 

  26. Ward JM, Anver MR, Haines DC, Melhorn JM, Gorelick P, Yan L, Fox JG (1996) Inflammatory large bowel disease in immunodeficient mice naturally infected with Helicobacter hepaticus. Lab Anim Sci 46: 15–20

    PubMed  CAS  Google Scholar 

  27. Quinn TC, Goodell SE, Mkrtichian EE, Schuffler MD, Wang SP, Stamm WE, Holmes KK (1981) Chlamydia trachomatis proctitis. N Engl J Med 305: 195–200

    PubMed  CAS  Google Scholar 

  28. Sartor RB, Cromartie WJ, Powell DW, Schwab JH (1985) Granulomatous enterocolitis induced in rats by purified bacterial cell wall fragments. Gastroenterology 89: 587–595

    PubMed  CAS  Google Scholar 

  29. McCall RD, Haskill S, Zimmermann EM, Lund PK, Thompson RC, Sartor RB (1994) Tissue interleukin 1 and interleukin-1 receptor antagonist expression in enterocolitis in resistant and susceptible rats. Gastroenterology 106: 960–972

    PubMed  CAS  Google Scholar 

  30. Herfarth HH, Mohanty SP, Rath HC, Tonkonogy S, Sartor RB (1996) Interleukin 10 suppresses experimental chronic, granulomatous inflammation induced by bacterial cell wall polymers. Gut 39: 836–845

    PubMed  CAS  Google Scholar 

  31. Yamada T, Zimmerman T, Specian RD, Grisham MB (1993) Chronic granulomatous colitis induced by intramural injection of Freund’s complete adjuvant. Gastroenterology 104: A804

    Google Scholar 

  32. MacPherson BR, Pfeiffer CJ (1978) Experimental production if diffuse colitis in rats. Digestion 17: 135–150

    PubMed  CAS  Google Scholar 

  33. Strober W (1985) Animal models of inflammatory bowel disease — an overview. Dig Dis Sci 30: 3S–10S

    PubMed  CAS  Google Scholar 

  34. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96: 795–803

    PubMed  CAS  Google Scholar 

  35. Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W (1995) Antibodies to interleukin-12 abrogate established experimental colitis in mice. J Exp Med 182: 1281–1290

    PubMed  CAS  Google Scholar 

  36. Miller MJS, Sadowka-Kowicka H, Chotinnaueml S, Kakkis JL, Clark DA (1993) Amelioration of chronic ileitis by nitric oxide synthesis inhibition. J Pharmacol Exp Ther 264: 11–16

    PubMed  CAS  Google Scholar 

  37. Shibata Y, Taruishi M, Ashida T (1993) Experimental ileitis in dogs and colitis in rats with trinitrobenzenesulfonic acid-colonoscopic and histopathologic changes. Gastroenterol Japonica 28: 518–527

    CAS  Google Scholar 

  38. Goldhill JM, Burakoff R, Donovan V, Rose K, Percy WH (1993) Defective modulation of colonic secretomotor neurons in a rabbit model of colitis. Am J Physiol 264: G671–G677

    PubMed  CAS  Google Scholar 

  39. Elson CO, Beagley KW, Sharmanov AT, Fujihashi K, Kiyono H, Tennyson GS, Cong Y, Black, CA, Ridwan BW, McGhee JR (1996) Hapten-induced model of murine inflammatory bowel disease: mucosa immune responses and protection by tolerance. J Immunol 157: 2174–2185

    PubMed  CAS  Google Scholar 

  40. Cavini A, Hackett CJ, Wilson KJ, Rothbard JB, Katz SI (1995) Characterization of epitopes recognized by hapten-specific CD4+ T cells. J Immunol 154: 1232–1238

    Google Scholar 

  41. Ekstrom GM (1998) Oxazolone-induced colitis in rats: effects of budesonide, cyclosporine A, and 5-aminosalicylic acid. Scand J Gastroenterol 33: 174–179

    PubMed  CAS  Google Scholar 

  42. Boirivant M, Fuss IJ, Chu A, Strober W (1998) Oxolozone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med 188: 1929–1939

    PubMed  CAS  Google Scholar 

  43. Ohkusa T (1985) Production of experimental ulcerative colitis in hamsters by dextran sulfate sodium and a change of intestinal microflora. Jpn J Gastroenterol 82: 1327–1336

    CAS  Google Scholar 

  44. Okayasu I, Hatekeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R (1990) A novel method in the induction of reliable experimental acute and ulcerative colitis in mice. Gastroenterology 98: 694–702

    PubMed  CAS  Google Scholar 

  45. Cooper HS, Murthy SNS, Shah RS, Seergran DJ (1993) Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 69: 238–249

    PubMed  CAS  Google Scholar 

  46. Murthy SN, Cooper HS, Shin H, Shah RS, Ibrahim SA, Sedergran DJ (1993) Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig Dis Sci 38: 1722–1734

    PubMed  CAS  Google Scholar 

  47. Okayasu I, Ohkusa T, Kajiuar K, Kanno J, Sakamoo S (1996) Promotion of colorectal neoplasia in experimental colitis. Gut 39: 87–92

    PubMed  CAS  Google Scholar 

  48. Iwanaga T, Hoshi O, Han H, Fujita T (1994) Morphological analysis of acute ulcerative colitis experimentally induced by dextran sulfate sodium in the guinea pig: possible mechanisms of cecal ulceration. J Gastroenterol 29: 430–438

    PubMed  CAS  Google Scholar 

  49. Domek MJ, Iwata F, Blackman EI, Kao J, Baker M, Vidrich A, Leung FW (1995) Anti-neutrophil serum attenuates dextran sulfate sodium-induced colonic damage in the rat. Scand J Gastroenterol 30: 1089–1094

    PubMed  CAS  Google Scholar 

  50. Yamada T, Ohkudas T, Okayasu I (1992) Occurrence of dysplasia and adenocarcinoma after experimental chronic ulcerative colitis in hamsters induced by dextran sulfate sodium. Gut 33: 1521–1527

    PubMed  CAS  Google Scholar 

  51. Tamaru K, Kobayashi H, Koshimoto S, Kajiyama G, Shimamoto F, Brown WR (1993) Histochemical study of colonic cancer in experimental colitis in rats. Dig Dis Sci 38: 529–537

    PubMed  CAS  Google Scholar 

  52. Cooper HS, Everley L, Chang W, Pfeiffer G, Lee B, Murthy S, Clapper M (2001) The role of mutant APC in the development of dysplasia and cancer in the mouse model of dextran sulfate sodium-induced colitis. Gastroenterology 121: 1407–1416

    PubMed  CAS  Google Scholar 

  53. Roediger WE, Moore J, Babdige W (1997) Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci 42: 1571–1579

    PubMed  CAS  Google Scholar 

  54. Bylund-Fellenius AC, Landstrom E, Axelsson LG, Midtvedt T (1994) Experimental colitis induced by dextran sulfate in normal and germfree mice. Microb Ecol Health Dis 7: 207–215

    Google Scholar 

  55. Rath HC, Schultz M, Freitag R, Dieleman LA, Li F, Hans-Jörg Linde H, Schölmerich J, Sartor RB (2001) Different subsets of bacteria induce and perpetuate experimental colitis in rats and mice. Infect Immun 69: 2277–2285

    PubMed  CAS  Google Scholar 

  56. Rachmilewitz D, Katakura K, Karmeli F, Hayashi T, Reinus C, Rudensky B, Akira S, Takeda K, Lee J, Takabayashi K, Raz E (2004) Toll-like receptor 9 signalling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126: 520–528

    PubMed  CAS  Google Scholar 

  57. Verdu EF, Bercik P, Cukrowska B, Farre-Castany MA, Bouzourene H, Saraga E, Blum AL, Corthesy-Theulaz I, Tlaskalova-Hogenova H, Michetti P (2000) Oral administration of antigens from intestinal flora anaerobic bacteria reduces the severity of experimental colitis in BALB/c mice. Clin Exp Immunol 12: 46–50

    Google Scholar 

  58. Setoyama H, Imaoka A, Ishikawa H, Umesaki Y (2003) Prevention of gut inflammation by Bifidobacterium in dextran sulfate-treated gnotobiotic mice associated with Bacteroides strains isolated from ulcerative colitis patients. Microbes Infect 5115–5127

    Google Scholar 

  59. Mähler M, Bristol IJ, Leiter EH, Workman AE, Birkenmeier EH, Charles O, Elson CO, Sundberg JP (1996) Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol 274: G544–G551

    Google Scholar 

  60. Dielman LA, Ridwan BU, Tennyson GS, Beakley KW, Elson CO (1994) Dextran sulfate sodium (DSS)-induced colitis occurs in severe combined immunodeficient (SCID) mice. Gastroenterology 107: 1722–1734

    Google Scholar 

  61. Axelsson LG, Landstrom E, Goldschmidt TJ, Gronberg A, Bylund-Fellinius A-C (1996) Dextran sulfate sodium (DSS) induced experimental colitis in immunodeficient mice. Effects in CD4+-cell depleted, athymic and NK-cell depleted SCID mice. Inflamm Res 45: 181–191

    PubMed  CAS  Google Scholar 

  62. Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eyesellin VE, Buchler MW (2000) Characterization of acute murine dextran sulphate colitis: cytokine profile and dependency. Digestion 62: 240–248

    PubMed  CAS  Google Scholar 

  63. Dielemann LA, Palmen MJ, Akol H, Bloemena E, Pena AS, Meuwissen SG, Van Rees EP (1998) Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol 114: 385–391

    Google Scholar 

  64. Murthy SN, Cooper HS, Coppola D, Barrish S, McKibbin R, Cerletti N, DiMuzzio J (1992) Transforming growth factor b2, but not epidermal growth factor yields protection against dextran sulfate-mediated colitis in mice. Gastroenterology 102: A669

    Google Scholar 

  65. Mashimo H, Wu DC, Podolsky DK, Fishman MC (1996) Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science 274: 204

    Google Scholar 

  66. Egaer B, Procaccino F, Laksmanan J, Reinshagen M, Hoffman P, Patel A, Reuben W, Gnanakkan S, Liu L, Barajas L, Eyesselein VE (1997) Mice lacking transforming growth factor alpha have an increased susceptibility to dextran sulfate-induced colitis. Gastroenterology 113: 825–832

    Google Scholar 

  67. Onderdonk AB (1985) The carrageenan model of experimental ulcerative colitis. Prog Clin Biol Res 186: 237–245

    PubMed  CAS  Google Scholar 

  68. Onderdonk AB, Bronson R, Cisneros R (1987) Comparison of Bacteroides vulgatus strains in the enhancement of experimental ulcerative colitis. Infect Immun 55: 835–836

    PubMed  CAS  Google Scholar 

  69. Yamada T, Deitch E, Specian RD, Perry MA, Sartor RB, Grisham MB (1993) Mechanisms of acute and chronic intestinal inflammation induced by indomethacin. Inflammation 17: 641–662

    PubMed  CAS  Google Scholar 

  70. Banerjee AK, Peters TJ (1990) Experimental non-steroidal anti-inflammatory drug-induced enteropathy in the rat: similarities to inflammatory bowel disease and effect of thromboxane synthesis inhibitors. Gut 31: 1358–1364

    PubMed  CAS  Google Scholar 

  71. Rachmilewicz D, Stanler JS, Karmeli F, Mullins ME, Singel DJ, Loxcalzo J, Xavier RJ Podolsky DK (1993) Peroxynitrite-induced rat colitis. A new model of colonic inflammation. Gastroenterology 105: 1681–1688

    Google Scholar 

  72. Keshavarzian A (1992) Mitomycin C-induced colitis in rats: A new model of acute colonic inflammation implicating reactive oxygen species. J Lab Clin Med 120: 778–791

    PubMed  CAS  Google Scholar 

  73. Rachmilewicz D, Karmeli F, Okon E (1995) Sulfhydryl blocker-induced rat colonic inflammation is ameliorated by inhibition of nitric oxide synthase. Gastroenterology 109: 98–106

    Google Scholar 

  74. Fretland DJ, Widomski DL, Levin S, Gaginella TS (1990) Colonic inflammation in the rabbit induced by phorbol-12-myristate-13-acetate. Inflammation 14: 143–150

    PubMed  CAS  Google Scholar 

  75. Satoh H, Sato F, Takami K, Szabo S (1997) New ulcerative colitis model induced by sulfhydryl blockers in rats and the effects of antiinflammatory drugs on the colitis. Jap J Pharmacol 73: 299–309

    PubMed  CAS  Google Scholar 

  76. Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD (1990) Spontaneous inflammatory disease inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2 m: an animal model of HLA-B27 associated disorders. Cell 63: 1099–1112

    PubMed  CAS  Google Scholar 

  77. Taurog JD, Maika SD, Simmons WA, Breban M, Hammer RE (1993) Susceptibility to inflammatory disease in HLA-B27 transgenic rat lines correlates with the level of B27 expression. J Immunol 150: 4168–4178

    PubMed  CAS  Google Scholar 

  78. Wirtz S, Finotto S, Kanzler S, Lohse AW, Blessing M, Leher HA, Galle PR, Neurath MF (1999) Chronic intestinal inflammation in STAT-4 transgenic mice: characterization of disease and adoptive transfer by TNF-plus IFN-gamma-producing CD4+ T cells that respond to bacterial antigens. J Immunol 162: 1884–1888

    PubMed  CAS  Google Scholar 

  79. Hermiston ML, Gordon JI (1995) Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 270: 1203–1207

    PubMed  CAS  Google Scholar 

  80. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I (1993) Ulcerative colitislike disease in mice with a disrupted interleukin-2 gene. Cell 75: 253–261

    PubMed  CAS  Google Scholar 

  81. Ma A, Datta M, Margosian E, Chen J, Horak I (1995) T cells, but not B cells, are required for bowel inflammation in interleukin deficient mice. J Exp Med 182:1567–1572

    PubMed  CAS  Google Scholar 

  82. Simpson SJ, Mizoguchi E, Allen D, Bhan AK, Terhorst C (1995) Evidence that CD4+ but not CD8+ T cells are responsible for bowel inflammation in interleukin-2 deficient colitis. Eur J Immunol 25: 2618–2625

    PubMed  CAS  Google Scholar 

  83. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W (1993) Interleukin-10 deficient mice develop chronic enterocolitis. Cell 75: 263–274

    PubMed  CAS  Google Scholar 

  84. Suzuki A, Hanada T, Mitsuyama K, Takafumi Y, Kamizano S, Hoshino T, Kubo M, Yamashita A, Okabe M, Takeda K et al (2001) CIS3/SOCS3/SSI3 plays a negative role in Stat 3 activation and intestinal inflammation. J Exp Med 193: 471–478

    PubMed  CAS  Google Scholar 

  85. Shull MM, Ormsby I, Kier AB, Pawloski S, Diebod RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse transforming growth factor-b1 gene results in multifactorial inflammatory bowel disease. Nature 359:693–699

    PubMed  CAS  Google Scholar 

  86. Spencer SD, Di MF, Hooley J, Pitts MS, Bauer M, Ruyan AM, Sordat B, Gibbs VC, Aguet M (1998) The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med 187: 571–578

    PubMed  CAS  Google Scholar 

  87. Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G, Thompson-Snipes L, Leach MW, Rennick D (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4+ Th1-like responses. J Clin Invest 98: 1010–1020

    PubMed  CAS  Google Scholar 

  88. Mombaeerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S (1993) Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 75: 275–282

    Google Scholar 

  89. Rudolph U, Finegold MJ, Rich SS, Harriman GR, Srinivasan Y, Brabet P, Boulay G, Bradley A, Bimbauer L (1995) Ulcerative colitis and adenocarcinoma of the colon in Gai2-deficient mice. Nat Genet 10: 141–148

    Google Scholar 

  90. Cominelli, F, Kontoyiannis D, Pizzaro TT, Kollias G (1998) Mice carrying an endogenous deletion of the 3′-AU-rich region of the TNFα gene develop a Crohn’s disease-like phenotype: A key role of the TNFα in the pathogenesis of chronic intestinal inflammation. Gastroenterology 114: G391

    Google Scholar 

  91. Panwala CM, Jones JC, Viney JL (1998) A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol 161: 5733–5744

    PubMed  CAS  Google Scholar 

  92. Diebold RJ, Eis MJ, Yin MY, Ormsby I, Boivin GP, Darrow BJ, Saffitz JE, Doetschman T (1995) Early onset of multifocal inflammation in the transforming growth factor β1-null mouse is lymphocyte mediated. Proc Natl Acad Sci USA 92: 12215–12219

    PubMed  CAS  Google Scholar 

  93. Ueno Y, Watanabe M, Yamazaki M, Yajima T, Ishiii H, Uehira M, Nishimoto H, Hata J, Hibi T (1996) Interleukin-7 transgenic mice develop chronic colitis with overexpression of IL-7 mRNA in the colonic mucosa. Gastroenterology 110: A1033

    Google Scholar 

  94. Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, Forster I, Akira S (1999) Enhanced TH1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10: 39–49

    PubMed  CAS  Google Scholar 

  95. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A (2000) Failure regulate TNF-induced NF-kappaB and cell death responses in A20 deficient mice. Science 30: 1–4

    CAS  Google Scholar 

  96. Clegg CH, Rulffes JT, Haugen HS, Hoggatt IH, Aruffo A, Durham SK, Farr AG, Hollenbaugh D (1997) Thymus dysfunction and chronic inflammatory bowel disease in gp39 transgenic mice. Int Immunol 9: 1111–1122

    PubMed  CAS  Google Scholar 

  97. Baribault H, Penner J, Iozzo RV, Wilson-Heiner M (1994) Colorectal hyperplasia and inflammation in keratin 8-deficient mice. Genes Dev 8: 2964–2973

    PubMed  CAS  Google Scholar 

  98. Morissey PJ, Charrier K, Braddy S, Liggit D, Watson JD (1993) CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immune mice. J Exp Med 178: 237–244

    Google Scholar 

  99. Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL (1993) Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C.B-17 SCID mice. Int Immunol 5: 1461–1471

    PubMed  CAS  Google Scholar 

  100. Read S, Malmstrom V, Powrie F (2000) Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 192: 295–302

    PubMed  CAS  Google Scholar 

  101. Barthlott B, Moncrieffe H, Veldhoen M, Atkins CJ, Christensen J, O’Garra A’, Stockinger B (1997) A CD4+ T cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742

    Google Scholar 

  102. Liu H, Hu B, Xu D, Liew FY (2003) CD4+CD25+ regulatory T cells cure murine colitis: the role of IL-10, TGF beta, and CTLA4. J Immunol 171: 5012–5017

    PubMed  CAS  Google Scholar 

  103. Asseman C, Leach MW, Mauze S, Coffman RL (1999) An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 190: 995–1004

    PubMed  CAS  Google Scholar 

  104. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL (1996) A critical role of transforming growth factor-b but not interleukin-4 in the suppression of T helper type-1-mediated colitis by CD45RBlow CD4+ T cells. J Exp Med 183: 2669–2674

    PubMed  CAS  Google Scholar 

  105. Maloy KJ, Salaun L, Cahill R, Dougan J, Saunders NJ, Powrie F (2003) CD4+CD25+ T (R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med 197: 111–119

    PubMed  CAS  Google Scholar 

  106. Davenport CM, McAdams HA, Kou J, Mascioli K, Eichman C, Healy L, Peterson J, Murphy S, Coppola D, Truneh A (2002) Inhibition of pro-inflammatory cytokine generation by CTLA4-Ig in the skin and colon of mice adoptively transplanted with CD45RBhi CD4+ T cells correlates with suppression of psoriasis and colitis. Int Immunopharmacol 2: 653–672

    PubMed  CAS  Google Scholar 

  107. Malmstrom V, Shipton D, Singh B, Al-Shamkhani A, Puklavec MJ, Barclay AN, Powrie F (2001) CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J Immunol 166: 6972–6981

    PubMed  CAS  Google Scholar 

  108. Higgins LM, McDonald SA, Whittle N, Crockett N, Shields JG, MacDonald TT (1999) Regulation of T cell activation in vitro and in vivo by targeting the OX40-OX40 ligand interaction: amelioration of ongoing inflammatory bowel disease with OX-40-IgG fusion protein, but not with an OX-40 ligand-IgG fusion protein. J Immunol 162:486–493

    PubMed  CAS  Google Scholar 

  109. Simpson SJ, Hollander G, Mizoguchi E, Bhan A, Terhorst C (1995) T lymphocytes in murine inflammatory bowel disease. Clin Immunol Immunopathol 76: S45–S46

    Google Scholar 

  110. Wang B, Shah SA, Simpson SJ, Allen D, Biron CA, Hollander GA, Terhorst C (1996) Protective role of natural killer cells in a mouse model of inflammatory bowel disease. Gastroenterology 110: A1042

    Google Scholar 

  111. Watkins DI, Hodi FS, Levin NL (1988) A primate species with limited major histocompatibility complex class I polymorphism. Proc Natl Acad Sci USA 85: 7714

    PubMed  CAS  Google Scholar 

  112. Sterberg PE, Winsor-Hines D, Briskin MJ, Soleer-Ferran D, Merrill C, Mckay CR, Newman W, Ringer DJ (1996) Rapid resolution of chronic colitis in the cotton top tamarin with an antibody to a gut homing integrin alpha 4 beta 7. Gastroenterology 111:1373–1380

    Google Scholar 

  113. Watkins PE, Warren BF, Stephens S, Ward P, Foulkes R (1997) Treatment of ulcerative colitis in the cotton top tamarin using antibody to tumor necrosis factor alpha. Gut 40:628–633

    PubMed  CAS  Google Scholar 

  114. Kosiewicz MM, Nast CC, Krishnan A, Rivera-Nieves J, Moskaluk CA, Matsumoto S, Kozaiwa K, Cominelli F (2001) Th1-type responses mediates spontaneous ileitis in a novel murine model of Crohn’s disease. J Clin Invest 107: 695–702

    PubMed  CAS  Google Scholar 

  115. Burns RC, Rivera-Nieves J, Moskaluk CA, Matsumoto S, Cominelli F, Ley K (2001) Antibody blockade of ICAM-1 and VCAM-1 ameliorates inflammation in the SAMP-1/Yit adoptive transfer model of Crohn’s disease in mice. Gastroenterology 121:1428–1436

    PubMed  CAS  Google Scholar 

  116. Inoue T, Tsuzuki T, Matsuzaki K, Matsunaga H, Miyazaki J, Hokari R, Okada Y, Kawaguchi A, Nagao S, Itoh K et al (2005) Blockade of PSGL-1 attenuates CD14+ monocyte cell recruitment in intestinal mucosa and ameliorates ileitis in SAMP1/Yit mice. J Leukoc Biol 77: 287–295

    PubMed  CAS  Google Scholar 

  117. Rivera-Nieves J, Olson T, Bamias G, Bruce A, Solga M, Knight RF, Hoang S, Cominelli F, Ley K (2005) L-selectin, alpha 4 beta 1, and alpha 4 beta 7 integrins participate in CD4+ T cell recruitment to chronically inflamed small intestine. J Immunol 174:2343–2352

    PubMed  CAS  Google Scholar 

  118. Axelsson LG, Ahlstedt S (1990) Characteristics of immune-complex-induced chronic experimental colitis in rats with a therapeutic effect of sulphasalzine. Scand J Gastroenterol 25: 203–209

    PubMed  CAS  Google Scholar 

  119. Cassini-Raggi V, Herbert C, Monsacchi L, Cominelli F (1994) A specific monoclonal antibody (MoAb) against interleukin-8 (IL-8) suppress inflammation in rabbit immune colitis. Gastroenterology 106: A661

    Google Scholar 

  120. Meenan J, Hommes DW, Mevissen M, Dijkhuizen S, Soule H, Moyle M, Buller HR, ten Kate FW, Tytgat GN, van Deventer SJ (1996) Attenuation of the inflammatory response in an animal colitis model by neutrophil inhibitory factor, a novel beta-2 integrin antagonist. Scand J Gastroenterol 31: 786–791

    PubMed  CAS  Google Scholar 

  121. Hommes DW, Meenan J, Dijkhuizen S, ten Kate FJ, Tytgat GN, van Deventer SJ (1996) Efficacy of recombinant granulocyte colony-stimulating-factor (rhG-CSF) in experimental colitis. Clin Exp Immunol 106: 529–533

    PubMed  CAS  Google Scholar 

  122. Podolsky DK, Lobb R, King N, Benjamin CD, Pepinsky B, Sehgal P, deBeaumont M (1993) Attenuation of colitis in the cotton top tamarin by anti-alpha-4 integrin monoclonal antibody. J Clin Invest 92: 372–380

    PubMed  CAS  Google Scholar 

  123. Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, Strober W (1996) Local administration of antisense phosphorothioate oligonucleotide to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med 2: 998–1004

    PubMed  CAS  Google Scholar 

  124. Neurath MF, Fuss I, Pasparakis M, Alexopoulou L, Haralambous S, Meyer zum Buschenfelde KH, Strober W, Kollias G (1997) Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol 27: 1743–1750

    PubMed  CAS  Google Scholar 

  125. Bertran X, Mane J, Fernandez-Banares F, Castella E, Bartoli R, Ojanguren I, Esteve M, Gassull MA (1996) Intracolonic administration of zileuton, a selective 5-lipoxygenase inhibitor, accelerates healing in a rat model of chronic colitis. Gut 38: 899–904

    PubMed  CAS  Google Scholar 

  126. Wallace JM, Keenan CM (1990) An orally active inhibitor of leukotriene synthesis accelerates healing in a rat model of colitis. Am J Physiol 258: G527–534

    PubMed  CAS  Google Scholar 

  127. Vilaseca J, Salas A, Guarner F, Rodriguez R, Martinez M, Malagelada J (1990) Dietary fish oil reduces progression of chronic inflammatory lesions in a rat model of granulomatous colitis. Gut 31: 539–544

    PubMed  CAS  Google Scholar 

  128. Wallace JL (1988) Release of platelet activating factor (PAF) and accelerated healing induced by a PAF antagonist in an animal model of chronic colitis. Can J Physiol Pharmacol 66: 422

    PubMed  CAS  Google Scholar 

  129. Luck MS, Bass P (1993) Effect of epidermal growth factor on experimental colitis in the rat. J Pharmacol Exp Ther 264: 984–990

    PubMed  CAS  Google Scholar 

  130. Zeeh JM, Procaccino F, Hoffman P, Aukerman SL, McRoberts JA, Soltani S, Pierce GF, Lakshamnan J, Lacey D, Eysseilein VE (1996) Keratinocyte growth factor ameliorates mucosal injury in an experimental model of colitis in rats. Gastroenterology 110:1077–1083

    PubMed  CAS  Google Scholar 

  131. Rachmilewicz D, Karmeli F, Okon E, Bursztyn M (1995) Experimental colitis is ameliorated by inhibition of nitric oxide synthase activity. Gut 37: 247–255

    Google Scholar 

  132. Duchmann R, Schmitt E, Knolle P, Meyer-zum Buschenfelde KH, Neurath M (1996) Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. Eur J Immunol 26: 934–938

    PubMed  CAS  Google Scholar 

  133. Qui BS, Pfeiffer CJ, Jeith JCJ (1996) Protection by recombinant human inerleukin-11 against experimental TNB-induced colitis in rats. Dig Dis Sci 41: 1625–1630

    Google Scholar 

  134. McCafferty DM, Rioux KJ, Wallace JL (1992) Granulocyte infiltration in experimental colitis in the rat is interleukin-1 dependent and leukotriene independent. Eicosanoids 5:121–125

    PubMed  CAS  Google Scholar 

  135. Fuss IJ, Marth T, Neurath MF, Pearlstein GR, Jain A, Strober W (1999) Antiinterleukin 12 treatment regulates apoptosis of Th1 T cells in experimental colitis in mice. Gastroenterology 117: 1078–1088

    PubMed  CAS  Google Scholar 

  136. Atreya R, Mudter J, Finnotto S, Mullberg J, Jostock T, Wurz S, Schuetz M, Bartsch B, Holtman MBC, Czaja F et al (2000) Blockade of IL-6 trans-signalling abrogates established experimental colitis in mice by suppression of T cell resistance against apoptosis in chronic intestinal inflammation: Evidence in Crohn’s disease and experimental colitis in vivo. Nat Med 6: 583–588

    PubMed  CAS  Google Scholar 

  137. Cooper HS, Murthy SNS, Shah RS, Sedergran DJ (1993) Clinicopathologic study of dextran sulfate sodium experimental colitis. Lab Invest 69: 238–249

    PubMed  CAS  Google Scholar 

  138. Murthy SN, Cooper HS, Shin HS, Shah RD, Ibrahim SA, Sedergran DJ (1993) Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig Dis Sci 38: 1722–1734

    PubMed  CAS  Google Scholar 

  139. Murthy S, Cooper HS, Coppola D, Shirer R (1992) Interleukin receptor-1 receptor antagonist is effective against dextran sulfate (DSS)-mediated colitis in mice. Gastroenterology 102: A669

    Google Scholar 

  140. Kojouharoff G, Hans W, Obermeir F, Mannel DN, Andus T, Scholmerich J, Gross V, Falk W (1997) Neutralization of tumor necrotic factor (TNF) but not IL-1 reduces inflammation in chronic dextran sulfate sodium-induced colitis in mice. Clin Exp Immunol 107: 353–358

    PubMed  CAS  Google Scholar 

  141. Murthy SNS, Fondacaro JD, Murthy NS, Cooper HS, Bolkenius F (1994) Beneficial effect of MDL 73404 in dextran sulfate mediate colitis. Agents Actions 41 (special conference):C233–234

    Google Scholar 

  142. Murthy S, Murthy NS, Coppola D, Wood DL (1997) The efficacy of BAY y 1015 in dextran sulfate model of mouse colitis. Inflamm Res 46: 224–233

    PubMed  CAS  Google Scholar 

  143. Tomoyose M, Mitsuyama K, Ishida H, Toyonaga A, Tanikawa K (1998) Role of interleukin-10 in a murine model of dextran sulfate sodium-induced colitis. Scand J Gastroenterol 33: 435–440

    PubMed  CAS  Google Scholar 

  144. Hamamoto N, Maermura K, Hirata I, Murano M, Sansaki S, Katsu K (1999) Inhibition of dextran sulphate (DSS)-induced colitis in mice by intracolonically administered antibodies against adhesion molecules (endothelial leukocyte adhesion molecule-1 (ELAM-1) or intracellular adhesionmolecule-1 (ICAM-1). Clin Exp Immunol 117: 462–468

    PubMed  CAS  Google Scholar 

  145. Bennet CF, Kornburst D, Henry S, Stecker K, Howard R, Cooper S, Dutson S, Hall W, Jacoby HI (1997) An ICAM-1 antisense oligonucleotide prevents and reverses dextran sulfate sodium-induced colitis in mice. J Pharmacol Exp Ther 280: 988–1000

    Google Scholar 

  146. Sue CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, Flanigan A, Murthy S, Lazar MA, Wu GD (1999) A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 104: 383–389

    Google Scholar 

  147. Murthy S, Cooper HS, Yoshitake H, Meyer C, Meyer CJ, Murthy NS (1999) Combination therapy of pentoxifylline and TNFα monoclonal antibody in dextran sulphate-induced mouse colitis. Aliment Pharmacol Ther 113: 251–260

    PubMed  CAS  Google Scholar 

  148. Myers KJ, Murthy S, Flanigan A, Witchell DR, Butler M, Murray S, Siwkowski A, Goodfellow D, Madsen K and Baker B (2003) Antisense oligonucleotide blockade of tumor necrosis factor-α in two murine models of colitis. J Pharmacol Exp Ther 304:411–424

    PubMed  CAS  Google Scholar 

  149. Murthy S, Flanigan A, Coppola D, Buelow R (2002) RDP 58, a locally active TNF inhibitor, is effective in the dextran sulphate mouse model of chronic colitis. Inflamm Res 51: 522–531

    PubMed  CAS  Google Scholar 

  150. Keshavarzian A, Morgan G, Sedghi S, Gordon JH, Doria A (1990) Role of reactive oxygen metabolites in experimental colitis. Gut 31: 786–790

    PubMed  CAS  Google Scholar 

  151. Thomas TK, Will PC, Srivatsava A, Wilson CL, Harbison M, Little J (1991) Evaluation of an interleukin-1 receptor antagonist in the rat acetic acid-induced colitis model. Agents Actions 34: 187–190

    PubMed  CAS  Google Scholar 

  152. Fedorak RN, Empey LR, MacArthur C, Jewell LD (1990) Misoprostol provides a colonic mucosal protective effect during acetic acid-induced colitis in rats. Gastroenterology 98: 615–622

    PubMed  CAS  Google Scholar 

  153. Keshavarzian A, Maydek J, Zabihi R, Doria M, D’Astice M, Sorensen JRJ (1992) Agents capable of eliminating reactive oxygen species: Catalase, WR-2721 or Cu(II)2 (3,5-DIPS) decrease experimental colitis. Dig Dis Sci 37: 1866–1873

    PubMed  CAS  Google Scholar 

  154. Onderdonk AB, Hermos JA, Dzink JL, Bartlett JG (1978) Protective effect of metronidazole in experimental ulcerative colitis. Gastroenterology 74: 521–526

    PubMed  CAS  Google Scholar 

  155. Fang W, Broughton A, Jacobson ED (1977) Indomethacin-induced intestinal inflammation. Dig Dis 22: 749–760

    CAS  Google Scholar 

  156. Banarjee AK, Peeters TJ (1990) Experimental non-steroidal antiinflammatory drug-induced enteropathy in the rat: Similarities to inflammatory bowel disease and effect of thromboxane synthetase inhibitors. Gut 31: 1358–1364

    Google Scholar 

  157. Stenson WF (1986) Role of lipoxygenase products in inflammatory bowel disease. In: D Rachmilewitz (ed.): Inflammatory bowel diseases. Martinus Nijhoff, The Hague, 95–104

    Google Scholar 

  158. Rachmilewictz D, Stamler JS, Kameli F, Mullins ME, Singel DJ, Loxcalzo J, Xavier RJ, Podolsky DK (1993) Peroxynitrate-induced rat colitis. A new model of colonic inflammation. Gastroenterology 105: 1681–1688

    Google Scholar 

  159. Rachmilewitz D, Karmeli F, Okon E (1995) Sulfhydryl blocker-induced rat colonic inflammation is ameliorated by inhibition of nitric oxide synthase. Gastroenterology 109: 98–106

    PubMed  CAS  Google Scholar 

  160. Fretland DJ, Widomski DL, Levin S, Gaginella TS (1990) Colonic inflammation in the rabbit induced by phorbol-12-myristate-13-acetate. Inflammation 14: 143–150

    PubMed  CAS  Google Scholar 

  161. Peterson RL, Wang L, Albert L, Keith-JC J, Dorner AJ (1998) Molecular effects of recombinant human interleukin-11 in the HLA-B27 rat model of inflammatory bowel disease. J Clin Invest 100: 2766–2776

    Google Scholar 

  162. Ehrhardt RO, Ludviksson BR, Gray B, Neurath M, Strober W (1997) Induction and prevention of colonic inflammation in IL-12 deficient mice. J Immunol 158: 566–573

    PubMed  CAS  Google Scholar 

  163. Morrissey PJ, Charrier K, Braddy S, Liggit D, Watson JD (1993) CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combine immune deficient mice. J Exp Med 178: 237–244

    PubMed  CAS  Google Scholar 

  164. Ludviksson BR, Stober W, Nishikomori R, Hasan SK, Erhardt RO (1999) Administration of mAb against alpha E beta 7 prevents and ameliorates immunization-induced colitis in IL2-/-mice. J Immunol 162: 4975–4982

    PubMed  CAS  Google Scholar 

  165. Mizoguchi E, Mizoguchi A, Bhan AK (1997) Role of cytokines in the early stages chronic colitis in TCR alpha-mutant mice. Lab Invest 76: 385–397

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Murthy, S. (2006). Animal models of inflammatory bowel disease. In: Stevenson, C.S., Marshall, L.A., Morgan, D.W. (eds) In Vivo Models of Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7760-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7643-7760-1_6

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-7757-1

  • Online ISBN: 978-3-7643-7760-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics