In vivo models of neurogenic inflammation

  • Pierangelo Geppetti
  • Serena Materazzi
  • Paola Nicoletti
  • Marcello Trevisani
Part of the Progress in Inflammation Research book series (PIR)


Mucus Secretion Neurogenic Inflammation Submucosal Gland Plasma Extravasation Sensory Nerve Ending 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lewis T (1927) The Blood Vessels of the Human Skin and Their Responses. Shaw and Sons, LondonGoogle Scholar
  2. 2.
    Jancso N, Jancso-Gabor A, Szolcsanyi J (1968) The role of sensory nerve endings in neurogenic inflammation induced in human skin and in the eye and paw of the rat. Br J Pharmacol Chemother 33: 32–41PubMedGoogle Scholar
  3. 3.
    Jancsó N, Jancsó-Gábor A, Szolcsányi J (1968) The role of sensory nerve endings in neurogenic inflammation induced in human skin and in the eye and paw of the rat. Br J Pharmacol 32: 32–41Google Scholar
  4. 4.
    Colpaert FC, Donnerer J, Lembeck F (1983) Effects of capsaicin on inflammation and on the substance P content of nervous tissues in rats with adjuvant arthritis. Life Sci 32:1827–1834PubMedCrossRefGoogle Scholar
  5. 5.
    Winter J, Forbes CA, Sternberg J, Lindsay RM (1988) Nerve growth factor (NGF) regulates adult rat cultured dorsal root ganglion neuron responses to the excitotoxin capsaicin. Neuron 1: 973–981PubMedCrossRefGoogle Scholar
  6. 6.
    Clapham DE (1997) TRP channels as cellular sensors. Nature 426: 517–524CrossRefGoogle Scholar
  7. 7.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRefGoogle Scholar
  8. 8.
    Szolcsanyi J (1984) Capsaicin-sensitive chemoceptive neural system with dual sensoryefferent function. Akademiai Kiado, BudapestGoogle Scholar
  9. 9.
    Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51: 159–212PubMedGoogle Scholar
  10. 10.
    Geppetti P, Holzer P (1996) Neurogenic inflammation. CRC Press, Boca RatonGoogle Scholar
  11. 11.
    Amara SG, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG (1985) Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 229: 1094–1097PubMedCrossRefGoogle Scholar
  12. 12.
    Nakanishi S (1987) Substance P precursor and kininogen: their structures, gene organizations, and regulation. Physiol Rev 67: 1117–1142PubMedGoogle Scholar
  13. 13.
    Regoli D, Boudon A, Fauchere JL (1994) Receptors and antagonists for substance P and related peptides. Pharmacol Rev 46: 551–599PubMedGoogle Scholar
  14. 14.
    Foord SM, Wise A, Brown J, Main MJ, Fraser NJ (1999) The N-terminus of RAMPs is a critical determinant of the glycosylation state and ligand binding of calcitonin receptor-like receptor. Biochem Soc Trans 27: 535–539PubMedGoogle Scholar
  15. 15.
    Figini M, Emanueli C, Bertrand C, Javdan P, Geppetti P (1996) Evidence that tachykinins relax the guinea-pig trachea via nitric oxide release and by stimulation of a septide-insensitive NK1 receptor. Br J Pharmacol 115: 128–132Google Scholar
  16. 16.
    Frossard N, Rhoden KJ, Barnes PJ (1989) Influence of epithelium on guinea pig airway responses to tachykinins: role of endopeptidase and cyclooxygenase. J Pharmacol Exp Ther 248: 292–298PubMedGoogle Scholar
  17. 17.
    Geppetti P, Betrand C, Bacci E, Huber O, Nadel JA (1993) Characterization of tachykinin receptors in the ferret trachea by peptide agonists and non-peptide antagonists. Am J Physiol 265: L164–L169PubMedGoogle Scholar
  18. 18.
    Lundberg JM (1995) Tachykinins, sensory nerves, and asthma — an overview. Can J Physiol Pharmacol 73: 908–914PubMedGoogle Scholar
  19. 19.
    Franco-Cereceda A (1991) Calcitonin gene-related peptide and human epicardial coronary arteries: presence, release and vasodilator effects. Br J Pharmacol 102: 506–510PubMedGoogle Scholar
  20. 20.
    Franco-Cereceda A, Lundberg JM, Saria A, Schreibmayer W, Tritthart HA (1988) Calcitonin gene-related peptide: release by capsaicin and prolongation of the action potential in the guinea-pig heart. Acta Physiol Scand 132: 181–190PubMedCrossRefGoogle Scholar
  21. 21.
    Advenier C, Naline E, Toty L, Bakdach H, Emonds-Alt X, Vilain P, Breliere JC, Le Fur G (1992) Effects on the isolated human bronchus of SR 48968, a potent and selective nonpeptide antagonist of the neurokinin A (NK2) receptors. Am Rev Respir Dis 146:1177–1181PubMedGoogle Scholar
  22. 22.
    Advenier C, Lagente V, Boichot E (1997) The role of tachykinin receptor antagonists in the prevention of bronchial hyperresponsiveness, airway inflammation and cough. Eur Respir J 10: 1892–1906PubMedCrossRefGoogle Scholar
  23. 23.
    Scheldrick RLG, Ball DI, Coleman RA (1990) Characterization of the neurokinin receptor mediating contraction of isolated tracheal preparations from a variety of species. Agents Actions (Suppl) 31: 205–210Google Scholar
  24. 24.
    Bertrand C, Nadel JA, Graf PD, Geppetti P (1993) Capsaicin increases airflow resistance in guinea pigs in vivo by activating both NK2 and NK1 tachykinin receptors. Am Rev Respir Dis 148: 909–914PubMedGoogle Scholar
  25. 25.
    Naline E, Molimard M, Regoli D, Emonds-Alt X, Bellamy JF, Advenier C (1996) Evidence for functional tachykinin NK1 receptors on human isolated small bronchi. Am J Physiol 271: L763–767PubMedGoogle Scholar
  26. 26.
    Baluk P, Bertrand C, Geppetti P, McDonald DM, Nadel JA (1995) NK1 receptors mediate leukocyte adhesion in neurogenic inflammation in the rat trachea. Am J Physiol 268:L263–L269PubMedGoogle Scholar
  27. 27.
    Corboz MR, Rivelli MA, Ramos SI, Rizzo CA, Hey JA (1998) Tachykinin NK1 receptor-mediated vasorelaxation in human pulmonary arteries. Eur J Pharmacol 350: R1–3PubMedCrossRefGoogle Scholar
  28. 28.
    Piedimonte G, Hoffman JI, Husseini WK, Snider RM, Desai MC, Nadel JA (1993) NK1 receptors mediate neurogenic inflammatory increase in blood flow in rat airways. J Appl Physiol 74: 2462–2468PubMedGoogle Scholar
  29. 29.
    Rogers DF, Aursudkij B, Barnes PJ (1989) Effects of tachykinins on mucus secretion in human bronchi in vitro. Eur J Pharmacol 174: 283–286PubMedCrossRefGoogle Scholar
  30. 30.
    Lecci A, Maggi CA (2001) Tachykinins as modulators of the micturition reflex in the central and peripheral nervous system. Regul Pept 101: 1–18PubMedCrossRefGoogle Scholar
  31. 31.
    Maggi CA, Giuliani S, Del Bianco E, Geppetti P, Theodorsson E, Santicioli P (1992) Calcitonin gene-related peptide in the regulation of urinary tract motility. Ann NY Acad Sci 657: 328–343PubMedGoogle Scholar
  32. 32.
    Geppetti P, Patacchini R, Cecconi R, Tramontana M, Meini S, Romani A, Nardi M, Maggi CA (1990) Effects of capsaicin, tachykinins, calcitonin gene-related peptide and bradykinin in the pig iris sphincter muscle. Naunyn Schmiedebergs Arch Pharmacol 341: 301–307PubMedCrossRefGoogle Scholar
  33. 33.
    Sicuteri F, Fanciullacci M, Nicolodi M, Geppetti P, Fusco BM, Marabini S, Alessandri M, Campagnolo V (1990) Substance P theory: a unique focus on the painful and painless phenomena of cluster headache. Headache 30: 69–79PubMedCrossRefGoogle Scholar
  34. 34.
    Geppetti P, Trevisani M (2004) Activation and sensitisation of the vanilloid receptor: role in gastrointestinal inflammation and function. Br J Pharmacol 141: 1313–1320PubMedCrossRefGoogle Scholar
  35. 35.
    Schmelz M, Petersen LJ (2001) Neurogenic inflammation in human and rodent skin. News Physiol Sci 16: 33–37PubMedGoogle Scholar
  36. 36.
    Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple painproducing stimuli. Neuron 21: 531–543PubMedCrossRefGoogle Scholar
  37. 37.
    Bevan S, Geppetti P (1994) Protons, small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci 17: 509–512PubMedCrossRefGoogle Scholar
  38. 38.
    Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ et al (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99: 8400–8405PubMedCrossRefGoogle Scholar
  39. 39.
    Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J, Cho S, Min KH, Suh YG, Kim D et al (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97: 6155–6160PubMedCrossRefGoogle Scholar
  40. 40.
    Zygmunt PM, Petersson J, Andersson DA, Chuang H, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400: 452–457PubMedCrossRefGoogle Scholar
  41. 41.
    Trevisani M, Smart D, Gunthorpe MJ, Tognetto M, Barbieri M, Campi B, Amadesi S, Gray J, Jerman JC, Brough SJ et al (2002) Ethanol elicits and potentiates nociceptor responses via the vanilloid receptor-1. Nat Neurosci 5: 546–551PubMedCrossRefGoogle Scholar
  42. 42.
    Trevisani M, Gazzieri D, Benvenuti F, Campi B, Dinh QT, Groneberg DA, Rigoni M, Emonds-Alt X, Creminon C, Fischer A et al (2004) Ethanol causes inflammation in the airways by a neurogenic and TRPV1-dependent mechanism. J Pharmacol Exp Ther 309:1167–1173PubMedCrossRefGoogle Scholar
  43. 43.
    Maggi CA, Meli A (1988) The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol 19: 1–43PubMedGoogle Scholar
  44. 44.
    Maggi CA (1991) The pharmacology of the efferent function of sensory nerves. J Auton Pharmacol 11: 173–208PubMedGoogle Scholar
  45. 45.
    Peiser C, Trevisani M, Groneberg DA, Dinh QT, Lencer D, Amadesi S, Maggiore B, Harrison S, Geppetti P, Fischer A (2005) Dopamine type 2 receptor expression and function in rodent sensory neurons projecting to the airways. Am J Physiol Lung Cell Mol Physiol 289: L153–158PubMedCrossRefGoogle Scholar
  46. 46.
    Geppetti P (1993) Sensory neuropeptide release by bradykinin: mechanisms and pathophysiological implications. Regul Pept 47: 1–23PubMedCrossRefGoogle Scholar
  47. 47.
    Holzer P (1988) Local effector functions of capsaicin-sensitive sensory nerves endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides. Neuroscience 24: 739–768PubMedCrossRefGoogle Scholar
  48. 48.
    Holzer P (1991) Capsaicin: cellular targets, mechanisms of actions, and selectivity for thin sensory neurons. Pharmacol Rev 43: 143–201PubMedGoogle Scholar
  49. 49.
    Bertrand C, Geppetti P (1996) Tachykinin and kinin receptor antagonists: therapeutic perspectives in allergic diease. Trends Pharmacol Sci 17: 255–259PubMedCrossRefGoogle Scholar
  50. 50.
    Bayliss W (1901) On the origin from the spinal cord of the vaso-dilator fibres of the hindlimb, and on the nature of these fibers. J Physiol 32: 1025–1043Google Scholar
  51. 51.
    Lin Q, Wu J, Willis WD (1999) Dorsal root reflexes and cutaneous neurogenic inflammation after intradermal injection of capsaicin in rats. J Neurophysiol 82: 2602–2611PubMedGoogle Scholar
  52. 52.
    Schulte H, Sollevi A, Segerdahl M (2004) The distribution of hyperaemia induced by skin burn injury is not correlated with the development of secondary punctate hyperalgesia. J Pain 5: 212–217PubMedCrossRefGoogle Scholar
  53. 53.
    Steinhoff M, Stander S, Seeliger S, Ansel JC, Schmelz M, Luger T (2003) Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol 139: 1479–1488PubMedCrossRefGoogle Scholar
  54. 54.
    Duling BR (1973) The preparation and use of the hamster cheek pouch for studies of the microcirculation. Microvasc Res 5: 423–429PubMedCrossRefGoogle Scholar
  55. 55.
    Hall JM, Brain SD (1994) Inhibition by SR 140333 of NK1 tachykinin receptor-evoked, nitric oxide-dependent vasodilatation in the hamster cheek pouch microvasculature in vivo. Br J Pharmacol 113: 522–526PubMedGoogle Scholar
  56. 56.
    Predescu D, Palade GE (1993) Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am J Physiol 265: H725–733PubMedGoogle Scholar
  57. 57.
    Kenins P, Hurley JV, Bell C (1984) The role of substance P in the axon reflex in the rat. Br J Dermatol 111: 551–559PubMedCrossRefGoogle Scholar
  58. 58.
    Majno G, Palade GE (1961) Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol 11: 571–605PubMedCrossRefGoogle Scholar
  59. 59.
    Majno G, Palade GE, Schoefl GI (1961) Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol 11: 607–626PubMedGoogle Scholar
  60. 60.
    Miller FN, Sims DE (1986) Contractile elements in the regulation of macromolecular permeability. Fed Proc 45: 84–88PubMedGoogle Scholar
  61. 61.
    Vergura R, Camarda V, Rizzi A, Spagnol M, Guerrini R, Calo G, Salvadori S, Regoli D (2004) Urotensin II stimulates plasma extravasation in mice via UT receptor activation. Naunyn Schmiedebergs Arch Pharmacol 370: 347–352PubMedCrossRefGoogle Scholar
  62. 62.
    Saria A, Lundberg JM (1983) Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods 8: 41–49PubMedCrossRefGoogle Scholar
  63. 63.
    Saria A, Lundberg JM, Skofitsch G, Lembeck F (1983) Vascular protein linkage in various tissue induced by substance P, capsaicin, bradykinin, serotonin, histamine and by antigen challenge. Naunyn Schmiedebergs Arch Pharmacol 324: 212–218PubMedCrossRefGoogle Scholar
  64. 64.
    Gabbiani G, Badonnel MC, Majno G (1970) Intra-arterial injections of histamine, serotonin, or bradykinin: a topographic study of vascular leakage. Proc Soc Exp Biol Med 135: 447–452PubMedGoogle Scholar
  65. 65.
    Kondo S, Matsumoto T, Yokoyama Y, Ohmori I, Suzuki H (1995) The shortest isoform of human vascular endothelial growth factor/vascular permeability factor (VEGF/VPF121) produced by Saccharomyces cerevisiae promotes both angiogenesis and vascular permeability. Biochim Biophys Acta 1243: 195–202PubMedGoogle Scholar
  66. 66.
    Udaka K, Takeuchi Y, Movat HZ (1970) Simple method for quantitation of enhanced vascular permeability. Proc Soc Exp Biol Med 133: 1384–1387PubMedGoogle Scholar
  67. 67.
    Markowitz S, Saito K, Moskowitz MA (1987) Neurogenically mediated leakage of plasma protein occurs from blood vessels in dura mater but not brain. J Neurosci 7:4129–4136PubMedGoogle Scholar
  68. 68.
    Gonzalez HL, Carmichael N, Dostrovsky JO, Charlton MP (2005) Evaluation of the time course of plasma extravasation in the skin by digital image analysis. J Pain 6:681–688PubMedCrossRefGoogle Scholar
  69. 69.
    Fu L, Kaneko T, Ikeda H, Nishiyama H, Suzuki S, Okubo T, Trevisani M, Geppetti P, Ishigatsubo Y (2002) Tachykinins via tachykinin NK(2) receptor activation mediate ozone-induced increase in the permeability of the tracheal mucosa in guinea-pigs. Br J Pharmacol 135: 1331–1335PubMedCrossRefGoogle Scholar
  70. 70.
    Tagawa A, Kaneko T, Nishiyama H, Shinohara T, Sato T, Geppetti P, Ishigatsubo Y (2005) Cigarette smoke increases mucosal permeability in guinea pig trachea via tachykinin NK2 receptor activation. Eur J Pharmacol 507: 223–228PubMedCrossRefGoogle Scholar
  71. 71.
    Baluk P, Bertrand C, Geppetti P, McDonald DM, Nadel JA (1996) NK1 receptor antagonist CP-99,994 inhibits cigarette smoke-induced neutrophil and eosinophil adhesion in rat tracheal venules. Exp Lung Res 22: 409–418PubMedGoogle Scholar
  72. 72.
    Markowitz S, Saito K, Buzzi MG, Moskowitz MA (1989) The development of neurogenic plasma extravasation in the rat dura mater does not depend upon the degranulation of mast cells. Brain Res 477: 157–165PubMedCrossRefGoogle Scholar
  73. 73.
    Liu YC, Khawaja AM, Rogers DF (1998) Effects of the cysteinyl leukotriene receptor antagonists pranlukast and zafirlukast on tracheal mucus secretion in ovalbumin-sensitized guinea-pigs in vitro. Br J Pharmacol 124: 563–571PubMedCrossRefGoogle Scholar
  74. 74.
    Davis CW, Abdullah LH (1997) In vitro models for airways mucin secretion. Pulm Pharmacol Ther 10: 145–155PubMedCrossRefGoogle Scholar
  75. 75.
    Davis B, Roberts AM, Coleridge HM, Coleridge JC (1982) Reflex tracheal gland secretion evoked by stimulation of bronchial C-fibers in dogs. J Appl Physiol 53: 985–991PubMedGoogle Scholar
  76. 76.
    Davis B, Nadel JA (1980) New methods used to investigate the control of mucus secretion and ion transport in airways. Environ Health Perspect 35: 121–130PubMedGoogle Scholar
  77. 77.
    Gashi AA, Nadel JA, Basbaum CB (1987) Autoradiographic studies of the distribution of 35sulfate label in ferret trachea: effects of stimulation. Exp Lung Res 13: 83–96PubMedGoogle Scholar
  78. 78.
    Mazzuca M, Lhermitte M, Lafitte JJ, Roussel P (1982) Use of lectins for detection of glycoconjugates in the glandular cells of the human bronchial mucosa. J Histochem Cytochem 30: 956–966PubMedGoogle Scholar
  79. 79.
    Hovenberg HW, Davies JR, Carlstedt I (1996) Different mucins are produced by the surface epithelium and the submucosa in human trachea: identification of MUC5AC as a major mucin from the goblet cells. Biochem J 318: 319–324PubMedGoogle Scholar
  80. 80.
    Xing PX, Apostolopoulos V, Pietersz G, McKenzie IF (2001) Anti-mucin monoclonal antibodies. Front Biosci 1: D1284–1295Google Scholar
  81. 81.
    Ueki I, German VF, Nadel JA (1980) Micropipette measurement of airway submucosal gland secretion. Autonomic effects. Am Rev Respir Dis 121: 351–357PubMedGoogle Scholar
  82. 82.
    German VF, Corrales R, Ueki IF, Nadel JA (1982) Reflex stimulation of tracheal mucus gland secretion by gastric irritation in cats. J Appl Physiol 52: 1153–1155PubMedGoogle Scholar
  83. 83.
    Rogers DF (1997) In vivo preclinical test models for studying airway mucus secretion. Pulm Pharmacol Ther 10: 121–128PubMedCrossRefGoogle Scholar
  84. 84.
    Somerville M, Richardson PS, Rutman A, Wilson R, Cole PJ (1991) Stimulation of secretion into human and feline airways by Pseudomonas aeruginosa proteases. J Appl Physiol 70: 2259–2267PubMedCrossRefGoogle Scholar
  85. 85.
    Di Maria GU, Bellofiore S, Geppetti P (1998) Regulation of airway neurogenic inflammation by neutral endopeptidase. Eur Respir J 12: 1454–1462PubMedCrossRefGoogle Scholar
  86. 86.
    Joos GF, Vincken W, Louis R, Schelfhout VJ, Wang JH, Shaw MJ, Cioppa GD, Pauwels RA (2004) Dual tachykinin NK1/NK2 antagonist DNK333 inhibits neurokinin Ainduced bronchoconstriction in asthma patients. Eur Respir J 23: 76–81PubMedCrossRefGoogle Scholar
  87. 87.
    Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, Pollentier S, Lesko LM (2004) Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med 350: 1104–1110PubMedCrossRefGoogle Scholar
  88. 88.
    Ichinose M, Belvisi MG, Barnes PJ (1990) Bradykinin-induced bronchoconstriction in guinea pig in vivo: role of neural mechanisms. J Pharmacol Exp Ther 253: 594–599PubMedGoogle Scholar
  89. 89.
    Takebayashi T, Abraham J, Murthy GG, Lilly C, Rodger I, Shore SA (1998) Role of tachykinins in airway responses to ozone in rats. J Appl Physiol 85: 442–450PubMedGoogle Scholar
  90. 90.
    Su X, Camerer E, Hamilton JR, Coughlin SR, Matthay MA (2005) Protease-activated receptor-2 activation induces acute lung inflammation by neuropeptide-dependent mechanisms. J Immunol 175: 2598–2605PubMedGoogle Scholar
  91. 91.
    Candenas L, Lecci A, Pinto FM, Patak E, Maggi CA, Pennefather JN (2005) Tachykinins and tachykinin receptors: effects in the genitourinary tract. Life Sci 76: 835–862PubMedCrossRefGoogle Scholar
  92. 92.
    Lecci A, Carini F, Tramontana M, Birder LA, de Groat WC, Santicioli P, Giuliani S, Maggi CA (2001) Urodynamic effects induced by intravesical capsaicin in rats and hamsters. Auton Neurosci 91: 37–46PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Pierangelo Geppetti
    • 1
    • 2
  • Serena Materazzi
    • 1
  • Paola Nicoletti
    • 1
  • Marcello Trevisani
    • 2
  1. 1.Clinical Pharmacology Unit, Department of Critical Care Medicine and SurgeryUniversity of FlorenceFlorenceItaly
  2. 2.Center of Excellence for the Study of InflammationUniversity of FerraraFerraraItaly

Personalised recommendations