Murine models of allergen-induced airway hyperresponsiveness and inflammation

  • Azzeddine Dakhama
  • Erwin W. Gelfand
Part of the Progress in Inflammation Research book series (PIR)


Airway Inflammation Airway Smooth Muscle Allergy Clin Immunol Airway Hyperresponsiveness Electrical Field Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cookson W (1999) The alliance of genes and environment in asthma and allergy. Nature 402: B5–11PubMedCrossRefGoogle Scholar
  2. 2.
    Barnes KC, Marsh DG (1998) The genetics and complexity of allergy and asthma. Immunol Today 19: 325–332PubMedCrossRefGoogle Scholar
  3. 3.
    Hosken NA, Shibuya K, Heath AW, Murphy KM, O’Garra A (1995) The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-alpha beta-transgenic model. J Exp Med 182: 1579–1584PubMedCrossRefGoogle Scholar
  4. 4.
    Murray JS, Pfeiffer C, Madri J, Bottomly K (1992) Major histocompatibility complex (MHC) control of CD4 T cell subset activation. II. A single peptide induces either humoral or cell-mediated responses in mice of distinct MHC genotype. Eur J Immunol 22: 559–565PubMedGoogle Scholar
  5. 5.
    Pfeiffer C, Stein J, Southwood S, Ketelaar H, Sette A, Bottomly K (1995) Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J Exp Med 181: 1569–1574PubMedCrossRefGoogle Scholar
  6. 6.
    Constant SL, Lee KS, Bottomly K (2000) Site of antigen delivery can influence T cell priming: pulmonary environment promotes preferential Th2-type differentiation. Eur J Immunol 30: 840–847PubMedCrossRefGoogle Scholar
  7. 7.
    Mosmann TR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17: 138–146PubMedCrossRefGoogle Scholar
  8. 8.
    Bochner BS, Undem BJ, Lichtenstein LM (1994) Immunological aspects of allergic asthma. Annu Rev Immunol 12: 295–335PubMedCrossRefGoogle Scholar
  9. 9.
    Stumbles PA, Thomas JA, Pimm CL, Lee PT, Venaille TJ, Proksch S, Holt PG (1998) Resting respiratory tract dendritic cells preferentially stimulate T helper cell type 2 (Th2) responses and require obligatory cytokine signals for induction of Th1 immunity. J Exp Med 188: 2019–2031PubMedCrossRefGoogle Scholar
  10. 10.
    Trinchieri G (1995) Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 13: 251–276PubMedCrossRefGoogle Scholar
  11. 11.
    Szabo SJ, Jacobson NG, Dighe AS, Gubler U, Murphy KM (1995) Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity 2: 665–675PubMedCrossRefGoogle Scholar
  12. 12.
    Moser M, Murphy KM (2000) Dendritic cell regulation of TH1-TH2 development. Nat Immunol 1: 199–205PubMedCrossRefGoogle Scholar
  13. 13.
    Holt PG, Clough JB, Holt BJ, Baron-Hay MJ, Rose AH, Robinson BW, Thomas WR (1992) Genetic ‘risk’ for atopy is associated with delayed postnatal maturation of T-cell competence. Clin Exp Allergy 22: 1093–1099PubMedCrossRefGoogle Scholar
  14. 14.
    Wegmann TG, Lin H, Guilbert L, Mosmann TR (1993) Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 14: 353–356PubMedCrossRefGoogle Scholar
  15. 15.
    Spergel JM, Paller AS (2003) Atopic dermatitis and the atopic march. J Allergy Clin Immunol 112: S118–127PubMedCrossRefGoogle Scholar
  16. 16.
    Hahn EL, Bacharier LB (2005) The atopic march: the pattern of allergic disease development in childhood. Immunol Allergy Clin North Am 25: 231–246PubMedCrossRefGoogle Scholar
  17. 17.
    Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299: 1259–1260PubMedCrossRefGoogle Scholar
  18. 18.
    Romagnani S (1994) Regulation of the development of type 2 T-helper cells in allergy. Curr Opin Immunol 6: 838–846PubMedCrossRefGoogle Scholar
  19. 19.
    von Mutius E, Braun-Fahrlander C, Schierl R, Riedler J, Ehlermann S, Maisch S, Waser M, Nowak D (2000) Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clin Exp Allergy 30: 1230–1234CrossRefGoogle Scholar
  20. 20.
    Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, Maisch S, Carr D, Gerlach F, Bufe A et al (2002) Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347: 869–877PubMedCrossRefGoogle Scholar
  21. 21.
    Park JH, Gold DR, Spiegelman DL, Burge HA, Milton DK (2001) House dust endotoxin and wheeze in the first year of life. Am J Respir Crit Care Med 163: 322–328PubMedGoogle Scholar
  22. 22.
    Gehring U, Bolte G, Borte M, Bischof W, Fahlbusch B, Wichmann HE, Heinrich J (2001) Exposure to endotoxin decreases the risk of atopic eczema in infancy: a cohort study. J Allergy Clin Immunol 108: 847–854PubMedCrossRefGoogle Scholar
  23. 23.
    Stene LC, Nafstad P (2001) Relation between occurrence of type 1 diabetes and asthma. Lancet 357: 607–608PubMedCrossRefGoogle Scholar
  24. 24.
    Yazdanbakhsh M, Kremsner PG, van Ree R (2002) Allergy, parasites, and the hygiene hypothesis. Science 296: 490–494PubMedCrossRefGoogle Scholar
  25. 25.
    Wills-Karp M, Santeliz J, Karp CL (2001) The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol 1: 69–75PubMedCrossRefGoogle Scholar
  26. 26.
    Romagnani S (2004) The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both? Immunology 112: 352–363PubMedCrossRefGoogle Scholar
  27. 27.
    Gelfand EW (2002) Pro: mice are a good model of human airway disease. Am J Respir Crit Care Med 166: 5–6; discussion 7–8PubMedCrossRefGoogle Scholar
  28. 28.
    Irvin CG, Bates JH (2003) Measuring the lung function in the mouse: the challenge of size. Respir Res 4: 4PubMedCrossRefGoogle Scholar
  29. 29.
    Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, Gelfand EW (1997) Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med 156: 766–775PubMedGoogle Scholar
  30. 30.
    Takeda K, Hamelmann E, Joetham A, Shultz LD, Larsen GL, Irvin CG, Gelfand EW (1997) Development of eosinophilic airway inflammation and airway hyperresponsiveness in mast cell-deficient mice. J Exp Med 186: 449–454PubMedCrossRefGoogle Scholar
  31. 31.
    Larsen GL, Fame TM, Renz H, Loader JE, Graves J, Hill M, Gelfand EW (1994) Increased acetylcholine release in tracheas from allergen-exposed IgE-immune mice. Am J Physiol 266: L263–270PubMedGoogle Scholar
  32. 32.
    Koya T, Kodama T, Takeda K, Miyahara N, Yang ES, Taube C, Joetham A, Park JW, Dakhama A, Gelfand EW (2006) Importance of myeloid dendritic cells in persistent airway disease after repeated allergen exposure. Am J Respir Crit Care Med 173: 45–55CrossRefGoogle Scholar
  33. 33.
    Kuhn R, Rajewsky K, Muller W (1991) Generation and analysis of interleukin-4 deficient mice. Science 254: 707–710PubMedCrossRefGoogle Scholar
  34. 34.
    Kopf M, Le Gros G, Bachmann M, Lamers MC, Bluethmann H, Kohler G (1993) Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature 362: 245–248PubMedCrossRefGoogle Scholar
  35. 35.
    Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM et al (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282: 2261–2263PubMedCrossRefGoogle Scholar
  36. 36.
    Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD (1998) Interleukin-13: central mediator of allergic asthma. Science 282: 2258–2261PubMedCrossRefGoogle Scholar
  37. 37.
    Walter DM, McIntire JJ, Berry G, McKenzie AN, Donaldson DD, DeKruyff RH, Umetsu DT (2001) Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J Immunol 167: 4668–4675PubMedGoogle Scholar
  38. 38.
    Taube C, Duez C, Cui ZH, Takeda K, Rha YH, Park JW, Balhorn A, Donaldson DD, Dakhama A, Gelfand EW (2002) The role of IL-13 in established allergic airway disease. J Immunol 169: 6482–6489PubMedGoogle Scholar
  39. 39.
    Cohn L, Homer RJ, Marinov A, Rankin J, Bottomly K (1997) Induction of airway mucus production By T helper 2 (Th2) cells: a critical role for interleukin 4 in cell recruitment but not mucus production. J Exp Med 186: 1737–1747PubMedCrossRefGoogle Scholar
  40. 40.
    Cohn L, Tepper JS, Bottomly K (1998) IL-4-independent induction of airway hyperresponsiveness by Th2, but not Th1, cells. J Immunol 161: 3813–3816PubMedGoogle Scholar
  41. 41.
    Joetham A, Takeda K, Taube C, Miyahara N, Kanehiro A, Dakhama A, Gelfand EW (2005) Airway hyperresponsiveness in the absence of CD4+ T cells after primary but not secondary challenge. Am J Respir Cell Mol Biol 33: 89–96PubMedCrossRefGoogle Scholar
  42. 42.
    Steinke JW (2004) Anti-interleukin-4 therapy. Immunol Allergy Clin North Am 24: 599–614PubMedCrossRefGoogle Scholar
  43. 43.
    Cieslewicz G, Tomkinson A, Adler A, Duez C, Schwarze J, Takeda K, Larson KA, Lee JJ, Irvin CG, Gelfand EW (1999) The late, but not early, asthmatic response is dependent on IL-5 and correlates with eosinophil infiltration. J Clin Invest 104: 301–308PubMedGoogle Scholar
  44. 44.
    Dakhama A, Kanehiro A, Makela MJ, Loader JE, Larsen GL, Gelfand EW (2002) Regulation of airway hyperresponsiveness by calcitonin gene-related peptide in allergen sensitized and challenged mice. Am J Respir Crit Care Med 165: 1137–1144PubMedGoogle Scholar
  45. 45.
    Taube C, Dakhama A, Rha YH, Takeda K, Joetham A, Park JW, Balhorn A, Takai T, Poch KR, Nick JA et al (2003) Transient neutrophil infiltration after allergen challenge is dependent on specific antibodies and Fc gamma III receptors. J Immunol 170: 4301–4309PubMedGoogle Scholar
  46. 46.
    Taube C, Nick JA, Siegmund B, Duez C, Takeda K, Rha YH, Park JW, Joetham A, Poch K, Dakhama A et al (2004) Inhibition of early airway neutrophilia does not affect development of airway hyperresponsiveness. Am J Respir Cell Mol Biol 30: 837–843PubMedCrossRefGoogle Scholar
  47. 47.
    Tomkinson A, Cieslewicz G, Duez C, Larson KA, Lee JJ, Gelfand EW (2001) Temporal association between airway hyperresponsiveness and airway eosinophilia in ovalbumin-sensitized mice. Am J Respir Crit Care Med 163: 721–730PubMedGoogle Scholar
  48. 48.
    Infuhr D, Crameri R, Lamers R, Achatz G (2005) Molecular and cellular targets of anti-IgE antibodies. Allergy 60: 977–985PubMedCrossRefGoogle Scholar
  49. 49.
    Mehlhop PD, van de Rijn M, Goldberg AB, Brewer JP, Kurup VP, Martin TR, Oettgen HC (1997) Allergen-induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc Natl Acad Sci USA 94: 1344–1349PubMedCrossRefGoogle Scholar
  50. 50.
    Hamelmann E, Takeda K, Schwarze J, Vella AT, Irvin CG, Gelfand EW (1999) Development of eosinophilic airway inflammation and airway hyperresponsiveness requires interleukin-5 but not immunoglobulin E or B lymphocytes. Am J Respir Cell Mol Biol 21: 480–489PubMedGoogle Scholar
  51. 51.
    Hamelmann E, Tadeda K, Oshiba A, Gelfand EW (1999) Role of IgE in the development of allergic airway inflammation and airway hyperresponsiveness — a murine model. Allergy 54: 297–305PubMedCrossRefGoogle Scholar
  52. 52.
    Hamelmann E, Oshiba A, Paluh J, Bradley K, Loader J, Potter TA, Larsen GL, Gelfand EW (1996) Requirement for CD8+ T cells in the development of airway hyperresponsiveness in a marine model of airway sensitization. J Exp Med 183: 1719–1729PubMedCrossRefGoogle Scholar
  53. 53.
    Taube C, Wei X, Swasey CH, Joetham A, Zarini S, Lively T, Takeda K, Loader J, Miyahara N, Kodama T et al (2004) Mast cells, Fc epsilon RI, and IL-13 are required for development of airway hyperresponsiveness after aerosolized allergen exposure in the absence of adjuvant. J Immunol 172: 6398–6406PubMedGoogle Scholar
  54. 54.
    Wynn TA (2003) IL-13 effector functions. Annu Rev Immunol 21: 425–456PubMedCrossRefGoogle Scholar
  55. 55.
    Wills-Karp M (2004) Interleukin-13 in asthma pathogenesis. Immunol Rev 202: 175–190PubMedCrossRefGoogle Scholar
  56. 56.
    Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA (1999) Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103: 779–788PubMedGoogle Scholar
  57. 57.
    Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, Elias JA, Sheppard D, Erle DJ (2002) Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 8: 885–889PubMedGoogle Scholar
  58. 58.
    Venkayya R, Lam M, Willkom M, Grunig G, Corry DB, Erle DJ (2002) The Th2 lymphocyte products IL-4 and IL-13 rapidly induce airway hyperresponsiveness through direct effects on resident airway cells. Am J Respir Cell Mol Biol 26: 202–208PubMedGoogle Scholar
  59. 59.
    Kay AB (1992) “Helper” (CD4+) T cells and eosinophils in allergy and asthma. Am Rev Respir Dis 145: S22–2PubMedGoogle Scholar
  60. 60.
    Romagnani S (2002) Cytokines and chemoattractants in allergic inflammation. Mol Immunol 38: 881–885PubMedCrossRefGoogle Scholar
  61. 61.
    Gavett SH, Chen X, Finkelman F, Wills-Karp M (1994) Depletion of murine CD4+ T lymphocytes prevents antigen-induced airway hyperreactivity and pulmonary eosinophilia. Am J Respir Cell Mol Biol 10: 587–593PubMedGoogle Scholar
  62. 62.
    Haile S, Lefort J, Joseph D, Gounon P, Huerre M, Vargaftig BB (1999) Mucous-cell metaplasia and inflammatory-cell recruitment are dissociated in allergic mice after antibody-and drug-dependent cell depletion in a murine model of asthma. Am J Respir Cell Mol Biol 20: 891–902PubMedGoogle Scholar
  63. 63.
    Miyahara N, Takeda K, Kodama T, Joetham A, Taube C, Park JW, Miyahara S, Balhorn A, Dakhama A, Gelfand EW (2004) Contribution of antigen-primed CD8+ T cells to the development of airway hyperresponsiveness and inflammation is associated with IL-13. J Immunol 172: 2549–2558PubMedGoogle Scholar
  64. 64.
    Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, Nakayama T, Taniguchi M, Grusby MJ, DeKruyff RH, Umetsu DT (2003) Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9: 582–588PubMedCrossRefGoogle Scholar
  65. 65.
    Burdin N, Kronenberg M (1999) CD1-mediated immune responses to glycolipids. Curr Opin Immunol 11: 326–331PubMedCrossRefGoogle Scholar
  66. 66.
    Gumperz JE (2006) The ins and outs of CD1 molecules: bringing lipids under immunological surveillance. Traffic 7: 2–13PubMedCrossRefGoogle Scholar
  67. 67.
    Dascher CC, Brenner MB (2003) Evolutionary constraints on CD1 structure: insights from comparative genomic analysis. Trends Immunol 24: 412–418PubMedCrossRefGoogle Scholar
  68. 68.
    Van Kaer L, Joyce S (2005) Innate immunity: NKT cells in the spotlight. Curr Biol 15: R429–431PubMedCrossRefGoogle Scholar
  69. 69.
    Yoshimoto T, Paul WE (1994) CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med 179: 1285–1295PubMedCrossRefGoogle Scholar
  70. 70.
    Bendelac A, Rivera MN, Park SH, Roark JH (1997) Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu Rev Immunol 15: 535–562PubMedCrossRefGoogle Scholar
  71. 71.
    Smiley ST, Kaplan MH, Grusby MJ (1997) Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275: 977–979PubMedCrossRefGoogle Scholar
  72. 72.
    Lisbonne M, Diem S, de Castro Keller A, Lefort J, Araujo LM, Hachem P, Fourneau JM, Sidobre S, Kronenberg M, Taniguchi M et al (2003) Invariant V alpha 14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J Immunol 171: 1637–1641PubMedGoogle Scholar
  73. 73.
    Kim JO, Kim DH, Chang WS, Hong C, Park SH, Kim S, Kang CY (2004) Asthma is induced by intranasal coadministration of allergen and natural killer T-cell ligand in a mouse model. J Allergy Clin Immunol 114: 1332–1338PubMedCrossRefGoogle Scholar
  74. 74.
    Hachem P, Lisbonne M, Michel ML, Diem S, Roongapinun S, Lefort J, Marchal G, Herbelin A, Askenase PW, Dy M et al (2005) Alpha-Galactosylceramide-induced iNKT cells suppress experimental allergic asthma in sensitized mice: role of IFN-gamma. Eur J Immunol 35: 2793–2802PubMedCrossRefGoogle Scholar
  75. 75.
    Matsuda H, Suda T, Sato J, Nagata T, Koide Y, Chida K, Nakamura H (2005) Alpha-Galactosylceramide, a ligand of natural killer T cells, inhibits allergic airway inflammation. Am J Respir Cell Mol Biol 33: 22–31PubMedCrossRefGoogle Scholar
  76. 76.
    Meyer EH, Goya S, Akbari O, Berry GJ, Savage PB, Kronenberg M, Nakayama T, Dekruyff RH, Umetsu DT (2006) Glycolipid activation of invariant T cell receptor+ NK T cells is sufficient to induce airway hyperreactivity independent of conventional CD4+ T cells. Proc Natl Acad Sci USA 103: 2782–2787PubMedCrossRefGoogle Scholar
  77. 77.
    Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L, Wang CR, Joyce S, Van Kaer L (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115: 2572–2583PubMedCrossRefGoogle Scholar
  78. 78.
    Sad S, Marcotte R, Mosmann TR (1995) Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 and Th2 cytokines. Immunity 2:271–279PubMedCrossRefGoogle Scholar
  79. 79.
    Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401: 708–712PubMedCrossRefGoogle Scholar
  80. 80.
    Masopust D, Vezys V, Marzo AL, Lefrancois L (2001) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291: 2413–2417PubMedCrossRefGoogle Scholar
  81. 81.
    Miyahara N, Swanson BJ, Takeda K, Taube C, Miyahara S, Kodama T, Dakhama A, Ott VL, Gelfand EW (2004) Effector CD8+ T cells mediate inflammation and airway hyperresponsiveness. Nat Med 10: 865–869PubMedCrossRefGoogle Scholar
  82. 82.
    Goodarzi K, Goodarzi M, Tager AM, Luster AD, von Andrian UH (2003) Leukotriene B4 and BLT1 control cytotoxic effector T cell recruitment to inflamed tissues. Nat Immunol 4: 965–973PubMedCrossRefGoogle Scholar
  83. 83.
    Tager AM, Bromley SK, Medoff BD, Islam SA, Bercury SD, Friedrich EB, Carafone AD, Gerszten RE, Luster AD (2003) Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat Immunol 4: 982–990PubMedCrossRefGoogle Scholar
  84. 84.
    Lewis RA, Austen KF, Soberman RJ (1990) Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med 323: 645–655PubMedCrossRefGoogle Scholar
  85. 85.
    Miyahara N, Takeda K, Miyahara S, Matsubara S, Koya T, Joetham A, Krishnan E, Dakhama A, Haribabu B, Gelfand EW (2005) Requirement for leukotriene B4 receptor 1 in allergen-induced airway hyperresponsiveness. Am J Respir Crit Care Med 172: 161–167PubMedCrossRefGoogle Scholar
  86. 86.
    Miyahara N, Takeda K, Miyahara S, Taube C, Joetham A, Koya T, Matsubara S, Dakhama A, Tager AM, Luster AD et al (2005) Leukotriene B4 receptor-1 is essential for allergen-mediated recruitment of CD8+ T cells and airway hyperresponsiveness. J Immunol 174: 4979–4984PubMedGoogle Scholar
  87. 87.
    Oshiba A, Hamelmann E, Takeda K, Bradley KL, Loader JE, Larsen GL, Gelfand EW (1996) Passive transfer of immediate hypersensitivity and airway hyperresponsiveness by allergen-specific immunoglobulin (Ig) E and IgG1 in mice. J Clin Invest 97: 1398–1408PubMedCrossRefGoogle Scholar
  88. 88.
    Taube C, Miyahara N, Ott V, Swanson B, Takeda K, Loader J, Shultz LD, Tager AM, Luster AD, Dakhama A et al (2006) The Leukotriene B4 receptor (BLT1) is required for effector CD8+ T cell-mediated, mast cell-dependent airway hyperresponsiveness. J Immunol 176: 3157–3164PubMedGoogle Scholar
  89. 89.
    van Rensen EL, Sont JK, Evertse CE, Willems LN, Mauad T, Hiemstra PS, Sterk PJ (2005) Bronchial CD8 cell infiltrate and lung function decline in asthma. Am J Respir Crit Care Med 172: 837–841PubMedCrossRefGoogle Scholar
  90. 90.
    Gelfand EW, Dakhama A (2006) CD8(+) T lymphocytes and leukotriene B4: Novel interactions in the persistence and progression of asthma. J Allergy Clin Immunol 117: 577–582PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Azzeddine Dakhama
    • 1
  • Erwin W. Gelfand
    • 1
  1. 1.Division of Cell Biology, Department of PediatricsNational Jewish Medical and Research CenterDenverUSA

Personalised recommendations