In vivo modeling systems for chronic obstructive pulmonary disease

  • Christopher S. Stevenson
  • David C. Underwood
Part of the Progress in Inflammation Research book series (PIR)


Concerning pharmacological characterization of drugs which may be effective in the treatment of COPD, just as there is no single animal model, we must also remember that no single drug has provided consistent efficacy in the clinical treatment of the disease. Therefore, a potential therapeutic drug regimen must be assessed in a model which appropriately reflects a particular aspect of the disease (i.e., inflammatory cell infiltration, mucus hypersecretion, airway wall remodeling, emphysema, and systemic disease). Because some agents (agonists, inhibitors or antagonists) may work in only certain animals, the appropriate stimulus and the particular therapeutic drug standard to which it should be compared may be species and strain dependent. Therefore, whenever possible, careful in vitro or ex vivo coordination and comparison of the activity found in tissues from the species and models selected to healthy and diseased human tissues should be made. Although rational therapeutic approaches based on inhibitory activity in a number of these models may increase the level of confidence in finding efficacy in the disease state, one should not oversimplify the etiology of the disease to fit the overall profile of the drug.


Chronic Obstructive Pulmonary Disease Chronic Obstructive Pulmonary Disease Patient Smoke Exposure Respir Crit Cigarette Smoke Exposure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pauwels, RA Buist, S, Calverley, PMA, Jenkins, CR, Hurd, SS (2001) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163: 1256–1276PubMedGoogle Scholar
  2. 2.
    Higgins BG, Francis HC, Yates CJ, Warburton CJ, Fletcher AM, Reid JA, Pickering CA, Woodcock AA (1995) Effects of air pollution on symptoms and peak expiratory flow measurements in subjects with obstructive airways disease. Thorax 50: 149–155PubMedCrossRefGoogle Scholar
  3. 3.
    Jany B, Gallup M, Tsuda T, Basbaum C (1991) Mucin gene expression in rat airways following infection and irritation. Biochem Biophys Res Commun 181: 1–8PubMedCrossRefGoogle Scholar
  4. 4.
    Lei YH, Barnes PJ, Rogers DF (1995) Mechanisms and modulation of airway plasma exudation after direct inhalation of cigarette smoke. Am J Respir Crit Care Med 151: 1752–1762PubMedGoogle Scholar
  5. 5.
    Dusser DJ, Djokic TD, Borson DB, Nadel JA (1989) Cigarette smoke induces bronchoconstrictor hyperresponsiveness to substance P and inactivates airway neutral endopeptidase in the guinea pig. Possible role of free radicals. J Clin Invest 84: 900–906PubMedGoogle Scholar
  6. 6.
    Turato G, Zuin R, Miniati M, Baraldo S, Rea F, Beghe B, Monti S, Formichi B, Boschetto P, Harari S et al (2002) Airway inflammation in severe chronic obstructive pulmonary disease: relationship with lung function and radiologic emphysema. Am J Respir Crit Care Med 166: 105–110PubMedCrossRefGoogle Scholar
  7. 7.
    Saetta M, Di Stefano A, Turato G, Facchini FM, Corbino L, Mapp CE, Maestrelli P, Ciaccia A, Fabbri LM (1998) CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157: 822–826PubMedGoogle Scholar
  8. 8.
    Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, Cherniack RM, Rogers RM, Sciurba FC, Coxson HO, Pare PD (2004) The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 350: 2645–2653PubMedCrossRefGoogle Scholar
  9. 9.
    Hogg JC (2004) Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 364: 709–721PubMedCrossRefGoogle Scholar
  10. 10.
    van der Strate BW, Postma DS, Brandsma CA, Melgert BN, Luinge MA, Geerlings M, Hylkema MN, van den Berg A, Timens W, Kerstjens HA (2006) Cigarette smoke-induced emphysema: A role for the B cell? Am J Respir Crit Care Med 173: 751–758PubMedCrossRefGoogle Scholar
  11. 11.
    Voelkel N, Taraseviciene-Stewart L (2005) Emphysema: an autoimmune vascular disease? Proc Am Thorac Soc 2: 23–25PubMedCrossRefGoogle Scholar
  12. 12.
    Taraseviciene-Stewart L, Scerbavicius R, Choe KH, Moore M, Sullivan A, Nicolls MR, Fontenot AP, Tuder RM, Voelkel NF (2005) An animal model of autoimmune emphysema. Am J Respir Crit Care Med 171: 734–742PubMedCrossRefGoogle Scholar
  13. 13.
    American Lung Association (2005) COPD Fact Sheet., Home > Chronic Obstructive Pulmonary Disease (COPD) center > COPD Fact Sheet ( Scholar
  14. 14.
    Fletcher C, Peto R (1977) The natural history of chronic airflow obstruction. Br Med J 25: 1645–1648CrossRefGoogle Scholar
  15. 15.
    Lundback B, Lindberg A, Lindstrom M, Ronmark E, Jonsson AC, Jonsson E, Larsson LG, Andersson S, Sandstrom T, Larsson K (2003) Obstructive lung disease in Northern Sweden studies. Not 15 but 50% of smokers develop COPD? — Report from the Obstructive Lung Disease in Northern Sweden Studies. Respir Med 97: 115–122.PubMedCrossRefGoogle Scholar
  16. 16.
    Eriksson S (1965) Studies in α1-antitrypsin deficiency. Acta Med Scand (Suppl) 432: 1–85Google Scholar
  17. 17.
    Laurell C-B, Eriksson S (1963) The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest 15: 132–140Google Scholar
  18. 18.
    Gross P, Pfitzer EA, Tolker E, Babyak MA, Kaschak M (1965) Experimental emphysema. Its production with papain in normal and silicotic rats. Arch Environ Health 11: 50–58PubMedGoogle Scholar
  19. 19.
    Thurlbeck WM (1990) Pathology of chronic obstructive pulmonary disease. Clin Chest Med 11: 389–403PubMedGoogle Scholar
  20. 20.
    Snider GL (1992) Emphysema: The first two centuries and beyond. A historical overview, with suggestions for future research: part 2. Am Rev Respir Dis 146: 1615–1622PubMedGoogle Scholar
  21. 21.
    Snider GL, Lucey EC, Stone PJ (1986) Animal models of emphysema. Am Rev Respir Dis 133: 149–169PubMedGoogle Scholar
  22. 22.
    Husain AN, Kumar V (2005) The lung. In: Kumar V, Abbas AK, Fausto N (eds): Robbins and Cotran — Pathologic basis of disease. Elsevier Saunders, Philadelphia, 711–772Google Scholar
  23. 23.
    Bates DV, Macklem PT, Christie RV (1971) Respiratory function in disease. WB Saunders, TorontoGoogle Scholar
  24. 24.
    Lucey EC, Stone PJ, Christensen TG, Breuer R, Snider GL (1988) An 18-month study of the effects on hamster lungs of intratracheally administered human neutrophil elastase. Exp Lung Res 14: 671–686PubMedGoogle Scholar
  25. 25.
    Birrell MA, Wong S, Hele DJ, McCluskie K, Hardaker E, Belvisi MG (2005) Steroid-resistant inflammation in a rat model of chronic obstructive pulmonary disease is associated with a lack of nuclear factor-kappaB pathway activation. Am J Respir Crit Care Med 172: 74–84PubMedCrossRefGoogle Scholar
  26. 26.
    Chang C, Houck JC (1970) Demonstration of the chemotactic properties of collagen. Proc Soc Exp Biol Med 134: 22–26PubMedGoogle Scholar
  27. 27.
    Postlethwaite AE, Kang AH (1976) Collagen and collagen peptide-induced chemotaxis of human blood monocytes. J Exp Med 143: 1299–1307PubMedCrossRefGoogle Scholar
  28. 28.
    Senior RM, Griffin GL, Mecham RP (1980) Chemotactic activity of elastin-derived peptides. J Clin Invest 66: 859–862PubMedGoogle Scholar
  29. 29.
    Houghton AM, Quintero PA, Perkins DL, Kobayashi DK, Kelley DG, Marconcini LA, Mecham RP, Senior RM, Shapiro SD (2006) Elastin fragments drive disease progression in a murine model of emphysema. J Clin Invest 116: 753–759PubMedCrossRefGoogle Scholar
  30. 30.
    Kaplan PD, Kuhn C, Pierce JA (1973) The induction of emphysema with elastase. I. The evolution of the lesion and the influence of serum. J Lab Clin Med 82: 349–356PubMedGoogle Scholar
  31. 31.
    Kuhn C, Yu SY, Chraplyvy M, Linder HE, Senior RM (1976) The induction of emphysema with elastase. II. Changes in connective tissue. Lab Invest 34: 372–380PubMedGoogle Scholar
  32. 32.
    Massaro GD, Massaro D (1997) Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nat Med 3: 675–677PubMedCrossRefGoogle Scholar
  33. 33.
    Massaro GD, Massaro D (1996) Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. Am J Physiol 270: L305–310PubMedGoogle Scholar
  34. 34.
    Massaro D, Massaro GD (1986) Dexamethasone accelerates alveolar wall thinning and alters wall composition. Am J Physiol 251: R218–R224PubMedGoogle Scholar
  35. 35.
    Ong DE, Chytil F (1976) Changes in levels of cellular retinol-and retinoic-acid-binding protein of liver and lung during perinatal development of rat. Proc Natl Acad Sci USA 73: 3976–3978PubMedCrossRefGoogle Scholar
  36. 36.
    Grummer MA, Zachman RD (1995) Postnatal rat lung retinoic acid receptor (RAR) mRNA expression and effects of dexamethasone on RAR-bmRNA. Pediatr Pulmonol 20: 234–240PubMedGoogle Scholar
  37. 37.
    Massaro D, Teich N, Maxwell S, Massaro GD, Whitney P (1985) Postnatal development of alveoli: Regulation and evidence for a critical period in rats. J Clin Invest 76: 1297_1305PubMedGoogle Scholar
  38. 38.
    Fujita M, Ye Q, Ouchi H, Nakashima N, Hamada N, Hagimoto N, Kuwano K, Mason RJ, Nakanishi Y (2004) Retinoic acid fails to reverse emphysema in adult mouse models. Thorax 59: 224–230PubMedCrossRefGoogle Scholar
  39. 39.
    Lucey EC, Goldstein RH, Breuer R, Rexer BN, Ong DE, Snider GL (2003) Retinoic acid does not affect alveolar septation in adult FVB mice with elastase-induced emphysema. Respiration 70: 200–205PubMedCrossRefGoogle Scholar
  40. 40.
    March TH, Cossey PY, Esparza DC, Dix KJ, McDonald JD, Bowen LE (2004) Inhalation administration of all-trans-retinoic acid for treatment of elastase-induced pulmonary emphysema in Fischer 344 rats. Exp Lung Res 30: 383–404PubMedCrossRefGoogle Scholar
  41. 41.
    Birrell MA, Wong S, Hardaker E, Catley MC, McCluskie K, Collins M, Haj-Yahia S, Belvisi MG (2006) I{kappa}B kinase-2 independent and dependent inflammation in airway disease models: relevance of IKK-2 inhibition to the clinic. Mol Pharmacol [Epubahead of print]Google Scholar
  42. 42.
    Lucey EC, Keane J, Kuang PP, Snider GL, Goldstein RH (2002) Severity of elastase-induced emphysema is decreased in tumor necrosis factor-alpha and interleukin-1beta receptor-deficient mice. Lab Invest 82: 79–85PubMedGoogle Scholar
  43. 43.
    Rubio ML, Martin-Mosquero MC, Ortega M, Peces-Barba G, Gonzalez-Mangado N (2004) Oral N-acetylcysteine attenuates elastase-induced pulmonary emphysema in rats. Chest 125: 1500–1506PubMedCrossRefGoogle Scholar
  44. 44.
    Shinohara T, Kaneko T, Nagashima Y, Ueda A, Tagawa A, Ishigatsubo Y (2005) Adenovirus-mediated transfer and overexpression of heme oxygenase 1 cDNA in lungs attenuates elastase-induced pulmonary emphysema in mice. Hum Gene Ther 16: 318–327PubMedCrossRefGoogle Scholar
  45. 45.
    Ishii Y, Itoh K, Morishima Y, Kimura T, Kiwamoto T, Iizuka T, Hegab AE, Hosoya T, Nomura A, Sakamoto T et al (2005) Transcription factor Nrf2 plays a pivotal role in protection against elastase-induced pulmonary inflammation and emphysema. J Immunol 175: 6968–6975PubMedGoogle Scholar
  46. 46.
    Ogura M and Kitamura M (1998) Oxidant stress incites spreading of macrophages via extracellular signal-regulated kinases and p38 mitogen-activated protein kinase. J Immunol 161: 3569–3574PubMedGoogle Scholar
  47. 47.
    Rahman I, Gilmour PS, Jimenez LA, MacNee W (2002) Oxidative stress and TNF-alpha induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial cells: potential mechanism in gene transcription in lung inflammation. Mol Cell Biochem 234–235: 239–248PubMedCrossRefGoogle Scholar
  48. 48.
    Carp H, Miller F, Hoidal JR, Janoff A (1982) Potential mechanism of emphysema: alpha-1-proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitor capacity. Proc Natl Acad Sci USA 79: 2041–2045PubMedCrossRefGoogle Scholar
  49. 49.
    Pryor WA, Dooley MD, Church DF (1986) The mechanisms of inactivation of human alpha-1-proteinase inhibitor by gas phase cigarette smoke. Free Radic Biol Med 2: 161–168Google Scholar
  50. 50.
    Cantor JO, Cerreta JM, Keller S, Turino GM (1995) Modulation of airspace enlargement in elastase-induced emphysema by intratracheal instillment of hyaluronidase and hyaluronic acid. Exp Lung Res 21: 423–436PubMedGoogle Scholar
  51. 51.
    Wright JL, Churg A (2002) Animal models of cigarette smoke-induced COPD. Chest 122: 301S–306SPubMedCrossRefGoogle Scholar
  52. 52.
    March TH, Barr EB, Finch GL, Hahn FF, Hobbs CH, Menache MG, Nikula KJ (1999) Cigarette smoke exposure produces more evidence of emphysema in B6C3F1 mice than in F344 rats. Toxicol Sci 51: 289–299PubMedCrossRefGoogle Scholar
  53. 53.
    Bartalesi B, Cavarra E, Fineschi S, Lucattelli M, Lunghi B, Martorana PA, Lungarella G (2005) Different lung responses to cigarette smoke in two strains of mice sensitive to oxidants. Eur Respir J 25: 15–22PubMedCrossRefGoogle Scholar
  54. 54.
    Guerassimov A, Hoshino Y, Takubo Y, Turcotte A, Yamamoto M, Ghezzo H, Triantafillopoulos A, Whittaker K, Hoidal JR, Cosio MG (2004) The development of emphysema in cigarette smoke-exposed mice is strain dependent. Am J Respir Crit Care Med 170: 974–980PubMedCrossRefGoogle Scholar
  55. 55.
    Churg A, Wang RD, Tai H, Wang X, Xie C, Dai J, Shapiro SD, Wright JL (2003) Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-alpha release. Am J Respir Crit Care Med 167: 1083–1089PubMedCrossRefGoogle Scholar
  56. 56.
    Leclerc O, Lagente V, Planquois JM, Berthelier C, Artola M, Eichholtz T, Bertrand CP, Schmidlin F (2006) Involvement of MMP-12 and phosphodiesterase type 4 in cigarette Smoke-induced inflammation in mice. Eur Respir J 27: 1102–1109PubMedCrossRefGoogle Scholar
  57. 57.
    Thatcher TH, McHugh NA, Egan RW, Chapman RW, Hey JA, Turner CK, Redonnet MR, Seweryniak KE, Sime PJ, Phipps RP (2005) Role of CXCR2 in cigarette smoke-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 289: L322–328PubMedCrossRefGoogle Scholar
  58. 58.
    Churg A, Wang RD, Tai H, Wang X, Xie C, Wright JL (2004) Tumor necrosis factoralpha drives 70% of cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 170: 492–498PubMedCrossRefGoogle Scholar
  59. 59.
    Cavarra E, Bartalesi B, Lucattelli M, Fineschi S, Lunghi B, Gambelli F, Ortiz LA, Martorana PA, Lungarella G (2001) Effects of cigarette smoke in mice with different levels of α1-proteinase inhibitor and sensitivity to oxidants. Am J Respir Crit Care Med 164: 886–890PubMedGoogle Scholar
  60. 60.
    van der Vaart H, Postma DS, Timens W, Hylkema MN, Willemse BW, Boezen HM, Vonk JM, de Reus DM, Kauffman HF, ten Hacken NH (2005) Acute effects of cigarette smoking on inflammation in healthy intermittent smokers. Respir Res 6: 22PubMedCrossRefGoogle Scholar
  61. 61.
    Churg A, Dai J, Tai H, Xie C, Wright JL (2002) Tumor necrosis factor-alpha is central to acute cigarette smoke-induced inflammation and connective tissue breakdown. Am J Respir Crit Care Med 166: 849–854PubMedCrossRefGoogle Scholar
  62. 62.
    Stevenson CS, Coote K, Webster R, Johnston H, Atherton HC, Nicholls A, Giddings J, Sugar R, Jackson A, Press NJ et al (2005) Characterization of cigarette smoke-induced inflammatory and mucus hypersecretory changes in rat lung and the role of CXCR2 ligands in mediating this effect. Am J Physiol Lung Cell Mol Physiol 288: L514–522PubMedCrossRefGoogle Scholar
  63. 63.
    D’hulst AI, Vermaelen KY, Brusselle GG, Joos GF, Pauwels RA (2005) Time course of cigarette smoke-induced pulmonary inflammation in mice. Eur Respir J 26: 204–213PubMedCrossRefGoogle Scholar
  64. 64.
    Stevenson CS, Winny C, Coote K, Giddings J, Whittaker P, Pohlmeyer-Esch G, Charman C, Danahay H, Butler K (2004) A chronic rat model of smoke-induced lung injury and comparison with an acute 24 h screening model. Am J Respir Crit Care Med 169: A205Google Scholar
  65. 65.
    Churg A, Zay K, Shay S, Xie C, Shapiro SD, Hendricks R, Wright JL (2002) Acute cigarette smoke-induced connective tissue breakdown requires both neutrophils and macrophage metalloelastase in mice. Am J Respir Cell Mol Biol 27: 368–374PubMedGoogle Scholar
  66. 66.
    Marwick JA, Kirkham PA, Stevenson CS, Danahay H, Giddings J, Butler K, Donaldson K, Macnee W, Rahman I (2004) Cigarette smoke alters chromatin remodeling and induces proinflammatory genes in rat lungs. Am J Respir Cell Mol Biol 31: 633–642PubMedCrossRefGoogle Scholar
  67. 67.
    Churg A, Cherukupalli K (1993) Cigarette smoke causes rapid lipid peroxidation of rat tracheal epithelium. Int J Exp Pathol 74: 127–132PubMedGoogle Scholar
  68. 68.
    Foronjy RF, Mirochnitchenko O, Propokenko O, Lemaitre V, Jia Y, Inouye M, Okada Y, D’Armiento JM (2006) Superoxide dismutase expression attenuates cigarette smoke-or elastase-generated emphysema in mice. Am J Respir Crit Care Med 173: 623–631PubMedCrossRefGoogle Scholar
  69. 69.
    Rogers DF and Jeffery PK (1986) Inhibition by oral N-acetylcysteine of cigarette smoke-induced “bronchitis” in the rat. Exp Lung Res 10: 267–283PubMedGoogle Scholar
  70. 70.
    Smith KR, Uyeminami DL, Kodavanti UP, Crapo JD, Chang LY, Pinkerton KE (2002) Inhibition of tobacco smoke-induced lung inflammation by a catalytic antioxidant. Free Radic Biol Med 33: 1106–1114PubMedCrossRefGoogle Scholar
  71. 71.
    Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S, Adcock IM, Hogg JC, Barnes PJ (2005) Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 352: 1967–1976PubMedCrossRefGoogle Scholar
  72. 72.
    Compton CH, Gubb J, Nieman R, Edelson J, Amit O, Bakst A, Ayres JG, Creemers JP, Schultze-Werninghaus G, Brambilla C et al (2001) Cilomilast, a selective phosphodiesterase-4 inhibitor for treatment of patients with chronic obstructive pulmonary disease: a randomised, dose-ranging study. Lancet 358: 265–270PubMedCrossRefGoogle Scholar
  73. 73.
    Rabe KF, Bateman ED, O’Donnell D, Witte S, Bredenbroker D, Bethke TD (2005) Roflumilast — an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 366: 563–571PubMedCrossRefGoogle Scholar
  74. 74.
    Gamble E, Grootendorst DC, Brightling CE, Troy S, Qiu Y, Zhu J, Parker D, Matin D, Majumdar S, Vignola AM et al (2003) Antiinflammatory effects of the phosphodiesterase-4 inhibitor cilomilast (Ariflo) in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 168: 976–982PubMedCrossRefGoogle Scholar
  75. 75.
    Martorana PA, Beume R, Lucattelli M, Wollin L, Lungarella G (2005) Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke. Am J Respir Crit Care Med 172: 848–853PubMedCrossRefGoogle Scholar
  76. 76.
    Weathington NM, van Houwelingen AH, Noerager BD, Jackson PL, Kraneveld AD, Galin FS, Folkerts G, Nijkamp FP, Blalock JE (2006) A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nat Med 12: 317–323PubMedCrossRefGoogle Scholar
  77. 77.
    Miller AL, Strieter RM, Gruber AD, Ho SB, Lukacs NW (2003) CXCR2 regulates respiratory syncytial virus-induced airway hyperreactivity and mucus overproduction. J Immunol 170: 3348–3356PubMedGoogle Scholar
  78. 78.
    Repine JE, Bast A, Lankhorst I (1997) Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study Group. Am J Respir Crit Care Med 156: 341–357PubMedGoogle Scholar
  79. 79.
    Schreck R, Albermann K, Baeuerle PA (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 17: 221–237PubMedGoogle Scholar
  80. 80.
    Hele D (2002) First Siena International Conference on animal models of chronic obstructive pulmonary disease, Certosa di Pontignano, University of Siena, Italy, September 30–October 2, 2001. Respir Res 3: 12PubMedCrossRefGoogle Scholar
  81. 81.
    Castro P, Legora-Machado A, Cardilo-Reis L, Valenca S, Porto LC, Walker C, Zuany-Amorim C, Koatz VL (2004) Inhibition of interleukin-1beta reduces mouse lung inflammation induced by exposure to cigarette smoke. Eur J Pharmacol 498: 279–286PubMedCrossRefGoogle Scholar
  82. 82.
    Dhami R, Gilks B, Xie C, Zay K, Wright JL, Churg A (2000) Acute cigarette smoke-induced connective tissue breakdown is mediated by neutrophils and prevented by alpha1-antitrypsin. Am J Respir Cell Mol Biol 22: 244–252PubMedGoogle Scholar
  83. 83.
    van der Vaart H, Koeter GH, Postma DS, Kauffman HF, ten Hacken NH (2005) First study of infliximab treatment in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 172: 465–469PubMedCrossRefGoogle Scholar
  84. 84.
    Antoniu SA (2006) Infliximab for chronic obstructive pulmonary disease: towards a more specific inflammation targeting? Expert Opin Investig Drugs 15: 181–184PubMedCrossRefGoogle Scholar
  85. 85.
    Rubio ML, Sanchez-Cifuentes MV, Ortega M, Peces-Barba G, Escolar JD, Verbanck S, Paiva M, Gonzalez Mangado N (2000) N-Acetylcysteine prevents cigarette smoke induced small airways alterations in rats. Eur Respir J 15: 505–511PubMedCrossRefGoogle Scholar
  86. 86.
    Cooper PR, Stevenson CS, Poll CT, Barnes PJ, Sturton RG (2005) Videomicroscopy of small airway function in precision cut lung slices prepared from tobacco smoke exposed rats. Proc Amer Thor Soc 2: A652Google Scholar
  87. 87.
    Wright JL, Sun JP, Churg A (1999) Cigarette smoke exposure causes constriction of rat lung. Eur Respir J 14: 1095–1099PubMedCrossRefGoogle Scholar
  88. 88.
    Wang RD, Tai H, Xie C, Wang X, Wright JL, Churg A (2003) Cigarette smoke produces airway wall remodeling in rat tracheal explants. Am J Respir Crit Care Med 168: 1232–1236PubMedCrossRefGoogle Scholar
  89. 89.
    Wright JL, Churg A (1990) Cigarette smoke causes physiologic and morphologic changes of emphysema in the guinea pig. Am Rev Respir Dis 142: 1422–1428PubMedGoogle Scholar
  90. 90.
    Meshi B, Vitalis TZ, Ionescu D, Elliott WM, Liu C, Wang XD, Hayashi S, Hogg JC (2002) Emphysematous lung destruction by cigarette smoke. The effects of latent adenoviral infection on the lung inflammatory response. Am J Respir Cell Mol Biol 26: 52–57PubMedGoogle Scholar
  91. 91.
    Selman M, Montano M, Ramos C, Vanda B, Becerril C, Delgado J, Sansores R, Barrios R, Pardo A (1996) Tobacco smoke-induced lung emphysema in guinea pigs is associated with increased interstitial collagenase. Am J Physiol 271: L734–743PubMedGoogle Scholar
  92. 92.
    James AL, Pare PD, Hogg JC (1988) Effects of lung volume, bronchoconstriction, and cigarette smoke on morphometric airway dimensions. J Appl Physiol 64: 913–919PubMedCrossRefGoogle Scholar
  93. 93.
    Wright JL, Ngai T, Churg A (1992) Effect of long-term exposure to cigarette smoke on the small airways of the guinea pig. Exp Lung Res 18: 105–114PubMedGoogle Scholar
  94. 94.
    Shapiro SD (2000) Animal models for chronic obstructive pulmonary disease: age of klotho and marlboro mice. Am J Respir Cell Mol Biol 22: 4–7PubMedGoogle Scholar
  95. 95.
    Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277: 2002–2004PubMedCrossRefGoogle Scholar
  96. 96.
    Shapiro SD, Demeo DL, Silverman EK (2004) Smoke and mirrors: Mouse models as a reflection of human chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170: 929–931PubMedCrossRefGoogle Scholar
  97. 97.
    Wright JL, Sun JP, Vedal S (1997) A longitudinal analysis of pulmonary function in rats during a 12-month cigarette smoke exposure. Eur Respir J 10: 1115–1119PubMedCrossRefGoogle Scholar
  98. 98.
    Heckman CA, Dalbey WE (1982) Pathogenesis of lesions induced in rat lung by chronic tobacco smoke inhalation. J Natl Cancer Inst 69: 117–129PubMedGoogle Scholar
  99. 99.
    Ofulue AF, Ko M, Abboud RT (1998) Time course of neutrophil and macrophage elastinolytic activities in cigarette smoke-induced emphysema. Am J Physiol 275: L1134–1144PubMedGoogle Scholar
  100. 100.
    Dawson AB (1934) Additional evidence of the failure of epiphyseal union in the skeleton of the rat: studies on wild and captive Norway rats. Anat Rec 60: 501–511CrossRefGoogle Scholar
  101. 101.
    Thurlbeck WM (1975) Lung growth and alveolar multiplication. Pathobiol Annu 5: 1–34PubMedGoogle Scholar
  102. 102.
    Fitzgerald MF, Spicer D, Henning R (2003) Efficacy of the PDE4 inhibitor, BAY 19-8004 and a steroid in tobacco smoke models of pulmonary inflammation. Am J Resp Crit Care Med 167: A91CrossRefGoogle Scholar
  103. 103.
    Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW, Yamamoto M, Petrache I, Tuder RM, Biswal S (2004) Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 114: 1248–1259PubMedCrossRefGoogle Scholar
  104. 104.
    Ma B, Kang MJ, Lee CG, Chapoval S, Liu W, Chen Q, Coyle AJ, Lora JM, Picarella D, Homer RJ, Elias JA (2005) Role of CCR5 in IFN-gamma-induced and cigarette smoke-induced emphysema. J Clin Invest 115: 3460–3472PubMedCrossRefGoogle Scholar
  105. 105.
    Wang Z, Zheng T, Zhu Z, Homer RJ, Riese RJ, Chapman HA Jr, Shapiro SD, Elias JA (2000) Interferon gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med 192: 1587–1600PubMedCrossRefGoogle Scholar
  106. 106.
    D’hulst AI, Bracke KR, Maes T, De Bleecker JL, Pauwels RA, Joos GF, Brusselle GG (2006) Role of TNF{alpha} receptor 2 in cigarette smoke-induced pulmonary inflammation and emphysema. Eur Respir J 28: 102–112PubMedCrossRefGoogle Scholar
  107. 107.
    Selman M, Cisneros-Lira J, Gaxiola M, Ramirez R, Kudlacz EM, Mitchell PG, Pardo A (2003) Matrix metalloproteinases inhibition attenuates tobacco smoke-induced emphysema in Guinea pigs. Chest 123: 1633–1641PubMedCrossRefGoogle Scholar
  108. 108.
    Churg A, Wang RD, Xie C, Wright JL (2003) Alpha-1-Antitrypsin ameliorates cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med 168: 199–207PubMedCrossRefGoogle Scholar
  109. 109.
    Wright JL, Farmer SG, Churg A (2002) Synthetic serine elastase inhibitor reduces cigarette smoke-induced emphysema in guinea pigs. Am J Respir Crit Care Med 166: 954–960PubMedCrossRefGoogle Scholar
  110. 110.
    Fitzgerald MF, Spicer D, Fox C, Kobayashi DK, Shapiro S (2002) Effect of acute and chronic smoke exposures to cigarette smoke in two strains of mice. Efficacy of a matrix metalloproteinase (MMP) inhibitor, BAY-15-7496, on emphysema development. Am J Respir Crit Care Med 165: A824Google Scholar
  111. 111.
    Shapiro SD, Goldstein NM, Houghton AM, Kobayashi DK, Kelley D, Belaaouaj A (2003) Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am J Pathol 163: 2329–2335PubMedGoogle Scholar
  112. 112.
    Loike JD, Sodeik B, Cao L, Leucona S, Weitz JI, Detmers PA, Wright SD, Silverstein SC (1991) CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc Natl Acad Sci USA 88: 1044–1048PubMedCrossRefGoogle Scholar
  113. 113.
    Owen CA, Campbell MA, Boukedes SS, Stockley RA, Campbell EJ (1994) A discrete subpopulation of human monocytes expresses a neutrophil-like proinflammatory (P) phenotype. Am J Physiol 267: L775–785PubMedGoogle Scholar
  114. 114.
    Ofulue AF, Ko M (1999) Effects of depletion of neutrophils or macrophages on development of cigarette smoke-induced emphysema. Am J Physiol 277: L97–105PubMedGoogle Scholar
  115. 115.
    D’hulst AI, Maes T, Bracke KR, Demedts IK, Tournoy KG, Joos GF, Brusselle GG (2005) Cigarette smoke-induced pulmonary emphysema in scid-mice. Is the acquired immune system required? Respir Res 6: 147PubMedCrossRefGoogle Scholar
  116. 116.
    Gualano RC, Vlahos R, Anderson GP (2006) What is the contribution of respiratory viruses and lung proteases to airway remodeling in asthma and chronic obstructive pulmonary disease? Pulm Pharmacol Ther 19: 18–23PubMedCrossRefGoogle Scholar
  117. 117.
    Drannik AG, Pouladi MA, Robbins CS, Goncharova SI, Kianpour S, Stampfli MR (2004) Impact of cigarette smoke on clearance and inflammation after Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 170: 1164–1171PubMedCrossRefGoogle Scholar
  118. 118.
    Schols AM, Slangen J, Volovics L, Wouters EF (1998) Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157: 1791–1797PubMedGoogle Scholar
  119. 119.
    Chen H, Vlahos R, Bozinovski B, Jones J, Anderson GP, Morris MJ (2005) Effect of short-term cigarette smoke exposure on body weight, appetite and brain neuropeptide Y in mice. Neuropsychopharmacology 30: 713–719PubMedGoogle Scholar
  120. 120.
    Stevenson CS, Koch LG, Britton SL (2006) Aerobic capacity, oxidant stress, and chronic obstructive pulmonary disease — A new take on an old hypothesis. Pharmacol Ther 110: 71–82PubMedCrossRefGoogle Scholar
  121. 121.
    Wright JL, Levy RD, Churg A (2005) Pulmonary hypertension in chronic obstructive pulmonary disease: current theories of pathogenesis and their implications for treatment. Thorax 60: 605–609PubMedCrossRefGoogle Scholar
  122. 122.
    Wright JL, Churg A (1991) Effect of long-term cigarette smoke exposure on pulmonary vascular structure and function in the guinea pig. Exp Lung Res 17: 997–1009PubMedGoogle Scholar
  123. 123.
    Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese RJ Jr, Chapman HA Jr, Shapiro SD, Elias JA (2000) Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase-and cathepsin-dependent emphysema. J Clin Invest 106: 1081–1093PubMedCrossRefGoogle Scholar
  124. 124.
    Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K (2005) Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol 32: 311–318PubMedCrossRefGoogle Scholar
  125. 125.
    Lanone S, Zheng T, Zhu Z, Liu W, Lee CG, Ma B, Chen Q, Homer RJ, Wang J, Rabach LA et al (2002) Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and-12 in IL-13-induced inflammation and remodeling. J Clin Invest 110: 463–474PubMedCrossRefGoogle Scholar
  126. 126.
    Underwood DC (1997) Chronic obstructive pulmonary disease. In: DW Morgan, LM Marshall (eds): In vivo models of inflammation. Birkhäuser, BaselGoogle Scholar
  127. 127.
    Nikula KJ, Green FH (2000) Animal models of chronic bronchitis and their relevance to studies of particle-induced disease. Inhal Toxicol 12: 123–153PubMedCrossRefGoogle Scholar
  128. 128.
    Mahadeva R, Shapiro SD (2002) Chronic obstructive pulmonary disease * 3: Experimental animal models of pulmonary emphysema. Thorax 57: 908–914PubMedCrossRefGoogle Scholar
  129. 129.
    Voelkel N, Taraseviciene-Stewart L (2005) Emphysema: an autoimmune vascular disease? Proc Am Thorac Soc 2: 23–25PubMedCrossRefGoogle Scholar
  130. 130.
    Chua F, Gauldie J, Laurent GJ (2005) Pulmonary fibrosis: searching for model answers. Am J Respir Cell Mol Biol 33: 9–13PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Christopher S. Stevenson
    • 1
  • David C. Underwood
    • 2
  1. 1.Respiratory Disease Area, Novartis Institutes for Biomedical ResearchNovartis Horsham, West Research CentreHorsham SussexUK
  2. 2.Center for Excellence in Drug Discovery, Respiratory DiseasesGlaxoSmithKline PharmaceuticalsKing of PrussiaUSA

Personalised recommendations