• William M. Selig
  • Eric T. Whalley
  • James L. Ellis
Part of the Progress in Inflammation Research book series (PIR)


Airway Inflammation Airway Smooth Muscle Allergy Clin Immunol Respir Crit House Dust Mite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Homer RJ, Elias JA (2005) Airway remodeling in asthma: therapeutic implications of mechanisms. Physiology 20: 28–35PubMedGoogle Scholar
  2. 2.
    Fabbri L, Peters SP, Pavord I, Wenzel SE, Lazarus SC, Macnee W, Lemaire F, Abraham E (2005) Allergic rhinitis, asthma, airway biology, and chronic obstructive pulmonary disease in AJRCCM in 2004. Am J Respir Crit Care Med 171: 686–698PubMedGoogle Scholar
  3. 3.
    Amin K, Ludviksdottir D, Janson C, Nettelbladt O, Bjornsson E, Roomans GM, Boman G, Seveus L, Venge P (2000) Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. Am J Respir Crit Care Med 162: 2295–2301PubMedGoogle Scholar
  4. 4.
    Sly PD, Turner DJ, Hantos Z (2004) Measuring lung function in murine models of pulmonary disease. Drug Discov Today 1: 337–343Google Scholar
  5. 5.
    Torres R, Picado C, de Mora F (2005) Use of the mouse to unravel allergic asthma: a review of the pathogenesis of allergic asthma in mouse models and its similarity to the condition in humans. Arch Bronconeumol 41: 141–152PubMedGoogle Scholar
  6. 6.
    Epstein MM (2004) Do mouse models of allergic asthma mimic clinical disease? Int Arch Allergy Immunol 133: 84–100PubMedGoogle Scholar
  7. 7.
    Kumar RK, Foster PS (2002) Modeling allergic asthma in mice: pitfalls and opportunities. Am J Respir Cell Mol Biol 27: 267–272PubMedGoogle Scholar
  8. 8.
    Cates EC, Fattouh R, Wattie J, Inman MD, Goncharova S, Coyle AJ, Gutierrez-Ramos JC, Jordana M (2004) Intranasal exposure of mice to house dust mite elicits allergic airway inflammation via a GM-CSF-mediated mechanism. J Immunol 173: 6384–6392PubMedGoogle Scholar
  9. 9.
    Kim J, McKinley L, Siddiqui J, Bolgos GL, Remick DG (2004) Prevention and reversal of pulmonary inflammation and airway hyperresponsiveness by dexamethasone treatment in a murine model of asthma induced by house dust. Am J Physiol Lung Cell Mol Physiol 287: L503–509PubMedGoogle Scholar
  10. 10.
    Fattouh R, Pouladi MA, Alvarez D, Johnson JR, Walker TD Goncharova S, Inman MD, Jordana M (2005) House dust mite facilitates ovalbumin-specific allergic sensitization and airway inflammation. Am J Respir Crit Care Med 172: 314–321PubMedGoogle Scholar
  11. 11.
    Moerloose KB, Pauwels RA, Joos GF (2005) Short-term cigarette smoke exposure enhances allergic airway inflammation in mice. Am J Respir Crit Care Med 172: 168–172PubMedGoogle Scholar
  12. 12.
    Barrett EG, Wilder JA, March TH, Espindola T, Bice DE (2002) Cigarette smoke-induced airway hyperresponsiveness is not dependent on elevated immunoglobulin and eosinophilic inflammation in a mouse model of allergic airway disease. Am J Respir Crit Care Med 165: 1410–1408PubMedGoogle Scholar
  13. 13.
    Seymour BW, Schelegle ES, Pinkerton KE, Friebertshauser KE, Peake JL, Kurup VP, Coffman RL, Gershwin LJ (2003) Second-hand smoke increases bronchial hyperreactivity and eosinophilia in a murine model of allergic aspergillosis. Clin Dev Immunol 10: 35–42PubMedGoogle Scholar
  14. 14.
    Chu HW, Rino JG, Wexler RB, Campbell K, Harbeck RJ, Martin RJ (2005) Mycoplasma pneumoniae infection increases airway collagen deposition in a murine model of allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 289: L125–133PubMedGoogle Scholar
  15. 15.
    Ichinose T, Takano H, Sadakane K, Yanagisawa R, Yoshikawa T, Sagai M, Shibamoto T (2004) Mouse strain differences in eosinophilic airway inflammation caused by intratracheal instillation of mite allergen and diesel exhaust particles. J Appl Toxicol 24: 69–76PubMedGoogle Scholar
  16. 16.
    Shinagawa K, Kojima M (2003) Mouse model of airway remodeling: strain differences. Am J Respir Crit Care Med 168: 959–967PubMedGoogle Scholar
  17. 17.
    Whitehead GS, Walker JK, Berman KG, Foster WM, Schwartz DA (2003) Allergen-induced airway disease is mouse strain dependent. Am J Physiol Lung Cell Mol Physiol 285: L32–42PubMedGoogle Scholar
  18. 18.
    Tormanen KR, Uller L, Persson CG, Erjefalt JS (2005) Allergen exposure of mouse airways evokes remodeling of both bronchi and large pulmonary vessels. Am J Respir Crit Care Med 171: 19–25PubMedGoogle Scholar
  19. 19.
    Reinhardt AK, Bottoms SE, Laurent GJ, McAnulty RJ (2005) Quantification of collagen and proteoglycan deposition in a murine model of airway remodelling. Respir Res 6: 30–43PubMedGoogle Scholar
  20. 20.
    Justice JP, Borchers MT, Crosby JR, Hines EM, Shen HH, Ochkur SI, McGarry MP, Lee NA, Lee JJ (2003) Ablation of eosinophils leads to a reduction of allergen-induced pulmonary pathology. Am J Physiol Lung Cell Mol Physiol 284: L169–178PubMedGoogle Scholar
  21. 21.
    Chung CD, Kuo F, Kumer J, Motani AS, Lawrence CE, Henderson WR Jr, Venkataraman C (2003) CCR8 is not essential for the development of inflammation in a mouse model of allergic airway disease. J Immunol 170: 581–587PubMedGoogle Scholar
  22. 22.
    Kumar RK, Herbert C, Webb DC, Li L, Foster PS (2004) Effects of anticytokine therapy in a mouse model of chronic asthma. Am J Respir Crit Care Med 170: 1043–1048PubMedGoogle Scholar
  23. 23.
    Cheng G, Arima M, Honda K, Hirata H, Eda F, Yoshida N, Fukushima F, Ishii Y, Fukuda T (2002) Anti-interleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am J Respir Crit Care Med 166: 409–416PubMedGoogle Scholar
  24. 24.
    Yang G, Li L, Volk A, Emmell E, Petley T, Giles-Komar J, Rafferty P, Lakshminarayanan M, Griswold DE, Bugelski PJ, Das AM (2005) Therapeutic dosing with anti-interleukin-13 monoclonal antibody inhibits asthma progression in mice. J Pharmacol Exp Ther 313: 8–15PubMedGoogle Scholar
  25. 25.
    Duez C, Kips J, Pestel J, Tournoy K, Tonnel AB, Pauwels R (2000) House dust mite-induced airway changes in hu-SCID mice. Am J Respir Crit Care Med 161: 200–206PubMedGoogle Scholar
  26. 26.
    Tournoy KG, Kips JC, Pauwels RA (2001) The allergen-induced airway hyperresponsiveness in a human-mouse chimera model of asthma is T cell and IL-4 and IL-5 dependent. J Immunol 166: 6982–6991PubMedGoogle Scholar
  27. 27.
    Hammad H, Lambrecht BN, Pochard P, Gosset P, Marquillies P, Tonnel AB, Pestel J (2002) Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7. J Immunol 169: 1524–1534PubMedGoogle Scholar
  28. 28.
    Mathur M, Herrmann K, Li X, Qin Y, Weinstock J, Elliott D, Monahan J, Padrid P (1999) TRFK-5 reverses established airway eosinophilia but not established hyperresponsiveness in a murine model of chronic asthma. Am J Respir Crit Care Med 159: 580–587PubMedGoogle Scholar
  29. 29.
    Kobayashi T, Iijima K, Kita H (2003) Marked airway eosinophilia prevents development of airway hyper-responsiveness during an allergic response in IL-5 transgenic mice J Immunol 170: 5756–5763PubMedGoogle Scholar
  30. 30.
    Tanaka H, Komai M, Nagao K, Ishizaki M, Kajiwara D, Takatsu K, Delespesse G, Nagai H (2004) Role of interleukin-5 and eosinophils in allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol 31: 62–68PubMedGoogle Scholar
  31. 31.
    Shen HH, Ochkur SI, McGarry MP, Crosby JR, Hines EM, Borchers MT, Wang H, Biechelle TL, O’Neill KR, Ansay TL et al (2003) A causative relationship exists between eosinophils and the development of allergic pulmonary pathologies in the mouse. J Immunol 170: 3296–3305PubMedGoogle Scholar
  32. 32.
    Elias JA, Zheng T, Lee CG, Homer RJ, Chen Q, Ma B, Blackburn M, Zhu Z (2003) Transgenic modeling of interleukin-13 in the lung. Chest 123: 339S–345SPubMedGoogle Scholar
  33. 33.
    Ameredes BT, Sethi JM, Liu HL, Choi AM, Calhoun WJ (2005) Enhanced nitric oxide production associated with airway hyporesponsiveness in the absence of IL-10. Am J Physiol Lung Cell Mol Physiol 288: L868–873PubMedGoogle Scholar
  34. 34.
    Rodriguez D, Keller AC, Faquim-Mauro EL, de Macedo MS, Cunha FQ, Lefort J, Vargaftig BB, Russo M (2003) Bacterial lipopolysaccharide signaling through Toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity. J Immunol 17: 1001–1008Google Scholar
  35. 35.
    Hjoberg J, Shore S, Kobzik L, Okinaga S, Hallock A, Vallone J, Subramaniam V, De Sanctis GT, Elias JA, Drazen JM, Silverman ES (2004) Expression of nitric oxide synthase-2 in the lungs decreases airway resistance and responsiveness. J Appl Physiol 97: 249–259PubMedGoogle Scholar
  36. 36.
    Vermaelen KY, Cataldo D, Tournoy K, Maes T, Dhulst A, Louis R, Foidart JM, Noel A, Pauwels R (2003) Matrix metalloproteinase-9-mediated dendritic cell recruitment into the airways is a critical step in a mouse model of asthma. J Immunol 17: 1016–1022Google Scholar
  37. 37.
    McMillan SJ, Kearley J, Campbell JD, Zhu XW, Larbi KY, Shipley JM, Senior RM, Nourshargh S, Lloyd CM (2004) Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J Immunol 172: 2586–2594PubMedGoogle Scholar
  38. 38.
    Warner RL, Lukacs NW, Shapiro SD, Bhagarvathula N, Nerusu KC, Varani J, Johnson KJ (2004) Role of metalloelastase in a model of allergic lung responses induced by cockroach allergen. Am J Pathol 165: 1921–1930PubMedGoogle Scholar
  39. 39.
    Drouin SM, Corry DB, Hollman TJ, Kildsgaard J, Wetsel RA (2002) Absence of the complement anaphylatoxin C3a receptor suppresses Th2 effector functions in a murine model of pulmonary allergy. J Immunol 169: 5926–5933PubMedGoogle Scholar
  40. 40.
    Mueller C, August A (2003) Attenuation of immunological symptoms of allergic asthma in mice lacking the tyrosine kinase ITK. J Immunol 170: 5056–5063PubMedGoogle Scholar
  41. 41.
    Poynter ME, Cloots R, van Woerkom T, Butnor KJ, Vacek P, Taatjes DJ, Irvin CG, Janssen-Heininger YM (2004) NF-kappa B activation in airways modulates allergic inflammation but not hyperresponsiveness. J Immunol 173: 7003–7009PubMedGoogle Scholar
  42. 42.
    Oda N, Canelos PB, Essayan DM, Plunkett BA, Myers AC, Huang SK (2005) Interleukin-17F induces pulmonary neutrophilia and amplifies antigen-induced allergic response. Am J Respir Crit Care Med 171: 12–18PubMedGoogle Scholar
  43. 43.
    Kumar RK, Herbert C, Thomas PS, Wollin L, Beume R, Yang M, Webb DC, Foster PS (2003) Inhibition of inflammation and remodeling by roflumilast and dexamethasone in murine chronic asthma. J Pharmacol Exp Ther 307: 349–355PubMedGoogle Scholar
  44. 44.
    Oh SW, Pae CI, Lee DK, Jones F, Chiang GK, Kim HO, Moon SH, Cao B, Ogbu C, Jeong KW et al (2002) Tryptase inhibition blocks airway inflammation in a mouse asthma model. J Immunol 168: 1992–2000PubMedGoogle Scholar
  45. 45.
    Kline JN, Kitagaki K, Businga TR, Jain VV (2002) Treatment of established asthma in a murine model using CpG oligodeoxynucleotides. Am J Physiol Lung Cell Mol Physiol 283: L170–179PubMedGoogle Scholar
  46. 46.
    Jain VV, Businga TR, Kitagaki K, George CL, O’Shaughnessy PT, Kline JN (2003) Mucosal immunotherapy with CpG oligodeoxynucleotides reverses a murine model of chronic asthma induced by repeated antigen exposure. Am J Physiol Lung Cell Mol Physiol 285: L1137–1146PubMedGoogle Scholar
  47. 47.
    Choudhury BK, Wild JS, Alam R, Klinman DM, Boldogh I, Dharajiya N, Mileski WJ, Sur S (2002) In vivo role of p38 mitogen-activated protein kinase in mediating the anti-inflammatory effects of CpG oligodeoxynucleotide in murine asthma. J Immunol 169: 5955–5961PubMedGoogle Scholar
  48. 48.
    Duan W, Chan JH, McKay K, Crosby JR, Choo HH, Leung BP, Karras JG, Wong WS (2005) Inhaled p38alpha mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am J Respir Crit Care Med 171: 571–578PubMedGoogle Scholar
  49. 49.
    Underwood DC, Osborn RR, Kotzer CJ, Adams JL, Lee JC, Webb EF, Carpenter DC, Bochnowicz S, Thomas HC, Hay DW, Griswold DE (2000) SB 239063, a potent p38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil infiltration, and persistence. J Pharmacol Exp Ther 293: 281–288PubMedGoogle Scholar
  50. 50.
    Duan W, Chan JH, Wong CH, Leung BP, Wong WS (2004) Anti-inflammatory effects of mitogen-activated protein kinase kinase inhibitor U0126 in an asthma mouse model. J Immunol 172: 7053–7059PubMedGoogle Scholar
  51. 51.
    Nabe T, Yamauchi K, Shinjo Y, Niwa T, Imoto K, Koda A, Kohno S (2005) Delayed-type asthmatic response induced by repeated intratracheal exposure to toluene-2,4-diisocyanate in guinea pigs. Int Arch Allergy Immunol 137: 115–124PubMedGoogle Scholar
  52. 52.
    Nishitsuji M, Fujimura M, Oribe Y, Nakao S (2004) A guinea pig model for cough variant asthma and role of tachykinins. Exp Lung Res 30: 723–737PubMedGoogle Scholar
  53. 53.
    Mickleborough TD, Gotshall RW, Rhodes J, Tucker A, Cordain L (2001) Elevating dietary salt exacerbates hyperpnea-induced airway obstruction in guinea pigs. J Appl Physiol 91: 1061–1066PubMedGoogle Scholar
  54. 54.
    Smith N, Johnson FJ (2005) Early-and late-phase bronchoconstriction, airway hyperreactivity and cell influx into the lungs, after 5′-adenosine monophosphate inhalation: comparison with ovalbumin. Clin Exp Allergy 35: 522–530PubMedGoogle Scholar
  55. 55.
    Ishiura Y, Fujimura M, Myou S, Amemiya T, Nobata K, Kurashima K, Nonomura A (2003) Airway eosinophil accumulation on sensory neuropeptide release in a guinea pig model of distilled-water-induced bronchoconstriction. J Investig Allergol Clin Immunol 13: 79–86PubMedGoogle Scholar
  56. 56.
    Kim E, Chun HO, Jung SH, Kim JH, Lee JM, Suh BC, Xiang MX, Rhee CK (2003) Improvement of therapeutic index of phosphodiesterase type IV inhibitors as anti-Asthmatics. Bioorg Med Chem Lett 13: 2355–2358PubMedGoogle Scholar
  57. 57.
    Billah MM, Cooper N, Minnicozzi M, Warneck J, Wang P, Hey JA, Kreutner W, Rizzo CA, Smith SR, Young S et al (2002) Pharmacology of N-(3,5-dichloro-1-oxido-4-pyridinyl)-8-methoxy-2-(trifluoromethyl)-5-quinoline carboxamide (SCH 351591), a novel, orally active phosphodiesterase 4 inhibitor. J Pharmacol Exp Ther 302: 127–137PubMedGoogle Scholar
  58. 58.
    Santing RE, de Boer J, Rohof A, van der Zee NM, Zaagsma J (2001) Bronchodilatory and anti-inflammatory properties of inhaled selective phosphodiesterase inhibitors in a guinea pig model of allergic asthma. Eur J Pharmacol 429: 335–344PubMedGoogle Scholar
  59. 59.
    Xie QM, Chen JQ, Shen WH, Yang QH, Bian RL (2002) Effects of cyclosporin A by aerosol on airway hyperresponsiveness and inflammation in guinea pigs. Acta Pharmacol Sin 23: 243–247PubMedGoogle Scholar
  60. 60.
    Morishita Y, Hirayama Y, Miyayasu K, Tabata K, Kawamura A, Ohkubo Y, Mutoh S (2005) FK506 aerosol locally inhibits antigen-induced airway inflammation in Guinea pigs. Int Arch Allergy Immunol 136: 372–378PubMedGoogle Scholar
  61. 61.
    Nagao K, Akabane H, Masuda T, Komai M, Tanaka H, Nagai H (2004) Effect of MX-68 on airway inflammation and hyperresponsiveness in mice and guinea-pigs. J Pharm Pharmacol 56: 187–196PubMedGoogle Scholar
  62. 62.
    Smith WG, Thompson JM, Souresrafil NS, McKearn JP (1998) Initial studies on the effect of inhaled misoprostol in a guinea pig model of allergic bronchoconstriction. Am J Ther 2: 755–760Google Scholar
  63. 63.
    Arimura A, Yasui K, Kishino J, Asanuma F, Hasegawa H, Kakudo S, Ohtani M, Arita H (2001) Prevention of allergic inflammation by a novel prostaglandin receptor antagonist, S-5751. J Pharmacol Exp Ther 298: 411–419PubMedGoogle Scholar
  64. 64.
    Mochizuki A, Tamura N, Yatabe Y, Onodera S, Hiruma T, Inaba N, Kusunoki J, Tomioka H (2001) Suppressive effects of F-1322 on the antigen-induced late asthmatic response and pulmonary eosinophilia in guinea pigs. Eur J Pharmacol 430: 123–133PubMedGoogle Scholar
  65. 65.
    Leick-Maldonado EA, Kay FU, Leonhardt MC, Kasahara DI, Prado CM, Fernandes FT, Martins MA, Tiberio IF (2004) Comparison of glucocorticoid and cysteinyl leukotriene receptor antagonist treatments in an experimental model of chronic airway inflammation in guinea-pigs. Clin Exp Allergy 34: 145–152PubMedGoogle Scholar
  66. 66.
    Wu YQ, Zhou CH, Zhang HQ (2004) Effects of montelukast on apoptosis and Fas mRNA expression of eosinophils in airway of asthmatic guinea pigs Yao Xue Xue Bao 39: 769–773PubMedGoogle Scholar
  67. 67.
    Xie QM, Chen JQ, Shen WH, Yang QH, Bian RL (2003) Comparison of bronchodilating and antiinflammatory activities of oral formoterol and its (R,R)-enantiomers. Acta Pharmacol Sin 24: 277–282PubMedGoogle Scholar
  68. 68.
    Gosens R, Bos IS, Zaagsma J, Meurs H (2005) Protective effects of tiotropium bromide in the progression of airway smooth muscle remodeling. Am J Respir Crit Care Med 171: 1096–1102PubMedGoogle Scholar
  69. 69.
    Zhang M, Nomura A, Uchida Y, Iijima H, Sakamoto T, Iishii Y, Morishima Y, Mochizuki M, Masuyama K, Hirano K et al (2002) Ebselen suppresses late airway responses and airway inflammation in guinea pigs. Free Radic Biol Med 32: 454–464PubMedGoogle Scholar
  70. 70.
    Takizawa T, Watanabe C, Saiki I, Wada Y, Tohma T, Nagai H (2001) Effects of a new antiallergic drug, VUF-K-8788, on infiltration of lung parenchyma by eosinophils in guinea pigs and eosinophil-adhesion to human umbilical vein endothelial cells (HUVEC). Biol Pharm Bull 24: 1127–1132PubMedGoogle Scholar
  71. 71.
    Duan W, Kuo IC, Selvarajan S, Chua KY, Bay BH, Wong WS (2003) Antiinflammatory effects of genistein, a tyrosine kinase inhibitor, on a guinea pig model of asthma. Am J Respir Crit Care Med 167: 185–192PubMedGoogle Scholar
  72. 72.
    Hirayama Y, Miyayasu K, Yamagami K, Imai T, Ohkubo Y, Mutoh S (2003) Effect of FK3657, a non-peptide bradykinin B2 receptor antagonist, on allergic airway disease models. Eur J Pharmacol 467: 197–203PubMedGoogle Scholar
  73. 73.
    Schuiling M, Zuidhof AB, Zaagsma J, Meurs H (1999) Role of tachykinin NK1 and NK2 receptors in allergen-induced early and late asthmatic reactions, airway hyperresponsiveness, and airway inflammation in conscious, unrestrained guinea pigs. Clin Exp Allergy 29S2: 48–52PubMedGoogle Scholar
  74. 74.
    Schuiling M, Zuidhof AB, Meurs H, Zaagsma J (1999) Role of tachykinin NK2-receptor activation in the allergen-induced late asthmatic reaction, airway hyperreactivity and airway inflammatory cell influx in conscious, unrestrained guinea-pigs. Br J Pharmacol 127: 1030–1038PubMedGoogle Scholar
  75. 75.
    Mukaiyama O, Morimoto K, Nosaka E, Takahashi S, Yamashita M (2004) Involvement of enhanced neurokinin NK3 receptor expression in the severe asthma guinea pig model. Eur J Pharmacol 498: 287–294PubMedGoogle Scholar
  76. 76.
    Mukaiyama O, Morimoto K, Nosaka E, Takahashi S, Yamashita M (2004) Greater involvement of neurokinins found in Guinea pig models of severe asthma compared with mild asthma. Int Arch Allergy Immunol 134: 263–272PubMedGoogle Scholar
  77. 77.
    Meurs H, McKay S, Maarsingh H, Hamer MA, Macic L, Molendijk N, Zaagsma J (2002) Increased arginase activity underlies allergen-induced deficiency of cNOS-derived nitric oxide and airway hyperresponsiveness. Br J Pharmacol 136: 391–398PubMedGoogle Scholar
  78. 78.
    Bautsch W, Hoymann HG, Zhang Q, Meier-Wiedenbach I, Raschke U, Ames RS, Sohns B, Flemme N, Meyer zu Vilsendorf A, Grove M et al (2002) Cutting edge: guinea pigs with a natural C3a-receptor defect exhibit decreased bronchoconstriction in allergic airway disease: evidence for an involvement of the C3a anaphylatoxin in the pathogenesis of asthma. J Immunol 165: 5401–5405Google Scholar
  79. 79.
    Morse B, Sypek JP, Donaldson DD, Haley KJ, Lilly CM (2002) Effects of IL-13 on airway responses in the guinea pig. Am J Physiol Lung Cell Mol Physiol 282: L44–49PubMedGoogle Scholar
  80. 80.
    Pauluhn J, Woolhiser MR, Bloemen L (2005) Repeated inhalation challenge with diphenylmethane-4,4′-diisocyanate in brown Norway rats leads to a time-related increase of neutrophils in bronchoalveolar lavage after topical induction. Inhal Toxicol 17: 67–78PubMedGoogle Scholar
  81. 81.
    Zhang XD, Fedan JS, Lewis DM, Siegel PD (2004) Asthmalike biphasic airway responses in Brown Norway rats sensitized by dermal exposure to dry trimellitic anhydride powder. J Allergy Clin Immunol 113: 320–326PubMedGoogle Scholar
  82. 82.
    Dong W, Selgrade MK, Gilmour MI (2003) Systemic administration of Bordetella pertussis enhances pulmonary sensitization to house dust mite in juvenile rats. Toxicol Sci 72: 113–121PubMedGoogle Scholar
  83. 83.
    Djuric VJ, Cox G, Overstreet DH, Smith L, Dragomir A, Steiner M (1998) Genetically transmitted cholinergic hyperresponsiveness predisposes to experimental asthma. Brain Behav Immun 12: 272–284PubMedGoogle Scholar
  84. 84.
    Leung SY, Eynott P, Nath P, Chung KF (2005) Effects of ciclesonide and fluticasone propionate on allergen-induced airway inflammation and remodeling features. J Allergy Clin Immunol 115: 989–996PubMedGoogle Scholar
  85. 85.
    Eynott PR, Nath P, Leung SY, Adcock IM, Bennett BL, Chung KF (2003) Allergen-induced inflammation and airway epithelial and smooth muscle cell proliferation: role of Jun N-terminal kinase. Br J Pharmacol 140: 1373–1380PubMedGoogle Scholar
  86. 86.
    Salmon M, Walsh DA, Koto H, Barnes PJ, Chung KF (1999) Repeated allergen exposure of sensitized Brown-Norway rats induces airway cell DNA synthesis and remodelling. Eur Respir J 14: 633–641PubMedGoogle Scholar
  87. 87.
    Xu KF, Vlahos R, Messina A, Bamford TL, Bertram JF, Stewart AG (2002) Antigen-induced airway inflammation in the Brown Norway rat results in airway smooth muscle hyperplasia. J Appl Physiol 93: 1833–1840PubMedGoogle Scholar
  88. 88.
    Vanacker NJ, Palmans E, Pauwels RA, Kips JC (2002) Fluticasone inhibits the progression of allergen-induced structural airway changes. Clin Exp Allergy 32: 914–920PubMedGoogle Scholar
  89. 89.
    Trifilieff A, Wyss D, Walker C, Mazzoni L, Hersperger R (2002) Pharmacological profile of a novel phosphodiesterase 4 inhibitor, 4-(8-benzo[1,2,5]oxadiazol-5-yl-[1,7]naphthyridin-6-yl)-benzoic acid (NVP-ABE171), a 1,7-naphthyridine derivative, with anti-inflammatory activities. J Pharmacol Exp Ther 301: 241–248PubMedGoogle Scholar
  90. 90.
    Aoki M, Fukunaga M, Kitagawa M, Hayashi K, Morokata T, Ishikawa G, Kubo S, Yamada T (2000) Effect of a novel anti-inflammatory compound, YM976, on antigen-induced eosinophil infiltration into the lungs in rats, mice, and ferrets. J Pharmacol Exp Ther 295: 1149–1155PubMedGoogle Scholar
  91. 91.
    Kurucz I, Nemeth K, Meszaros S, Torok K, Nagy Z, Zubovics Z, Horvath K, Bodor N (2004) Anti-inflammatory effect and soft properties of etiprednol dicloacetate (BNP-166), a new, anti-asthmatic steroid. Pharmazie 59: 412–416PubMedGoogle Scholar
  92. 92.
    Hersperger R, Buchheit KH, Cammisuli S, Enz A, Lohse O, Ponelle M, Schuler W, Schweitzer A, Walker C, Zehender H et al (2004) A locally active anti-inflammatory macrolide (MLD987) for inhalation therapy of asthma. J Med Chem 47: 4950–4957PubMedGoogle Scholar
  93. 93.
    del Pozo V, Rojo M, Rubio ML, Cortegano I, Cardaba B, Gallardo S, Ortega M, Civantos E, Lopez E, Martin-Mosquero C et al (2002) Gene therapy with galectin-3 inhibits bronchial obstruction and inflammation in antigen-challenged rats through interleukin-5 gene downregulation. Am J Respir Crit Care Med 166: 732–737PubMedGoogle Scholar
  94. 94.
    Stenton GR, Ulanova M, Dery RE, Merani S, Kim MK, Gilchrist M, Puttagunta L, Musat-Marcu S, James D, Schreiber AD et al (2002) Inhibition of allergic inflammation in the airways using aerosolized antisense to Syk kinase. J Immunol 169: 1028–1036PubMedGoogle Scholar
  95. 95.
    Ziegelbauer K, Gantner F, Lukacs NW, Berlin A, Fuchikami K, Niki T, Sakai K, Inbe H, Takeshita K, Ishimori M et al (2005) A selective novel low-molecular-weight inhibitor of IkappaB kinase-beta (IKK-beta) prevents pulmonary inflammation and shows broad anti-inflammatory activity. Br J Pharmacol 145: 178–192PubMedGoogle Scholar
  96. 96.
    Eynott PR, Xu L, Bennett BL, Noble A, Leung SY, Nath P, Groneberg DA, Adcock IM, Chung KF (2004) Effect of an inhibitor of Jun N-terminal protein kinase, SP600125, in single allergen challenge in sensitized rats. Immunology 112: 446–453PubMedGoogle Scholar
  97. 97.
    Morokata T, Suzuki K, Ida K, Tsuchiyama H, Ishikawa J, Yamada T (2004) Effect of a novel interleukin-5 receptor antagonist, YM-90709 (2,3-dimethoxy-6,6-dimethyl-5,6-dihydrobenzo[7,8]indolizino[2,3-b]quinoxaline), on antigen-induced airway inflammation in BN rats. Int Immunopharmacol 4: 873–883PubMedGoogle Scholar
  98. 98.
    Huang TJ, Eynott P, Salmon M, Nicklin PL, Chung KF (2002) Effect of topical immunomodulators on acute allergic inflammation and bronchial hyperresponsiveness in sensitised rats. Eur J Pharmacol 437: 187–194PubMedGoogle Scholar
  99. 99.
    Eynott PR, Salmon M, Huang TJ, Oates T, Nicklin PL, Chung KF (2003) Effects of cyclosporin A and a rapamycin derivative (SAR943) on chronic allergic inflammation in sensitized rats. Immunology 109: 461–467PubMedGoogle Scholar
  100. 100.
    Matsumoto K, Hayakawa H, Ide K, Suda T, Chida K, Hashimoto H, Sato A, Nakamu-ra H (2002) Effects of suplatast tosilate on cytokine profile of bronchoalveolar cells in allergic inflammation of the lung. Respirology 7: 201–207PubMedGoogle Scholar
  101. 101.
    Fozard JR, Ellis KM, Villela Dantas MF, Tigani B, Mazzoni L (2002) Effects of CGS 21680, a selective adenosine A2A receptor agonist, on allergic airways inflammation in the rat. Eur J Pharmacol 438: 183–188PubMedGoogle Scholar
  102. 102.
    Huang TJ, Adcock IM, Chung KF (2001) A novel transcription factor inhibitor, SP100030, inhibits cytokine gene expression, but not airway eosinophilia or hyperresponsiveness in sensitized and allergen-exposed rat. Br J Pharmacol 134: 1029–1036PubMedGoogle Scholar
  103. 103.
    Nonaka T, Mitsuhashi H, Takahashi K, Sugiyama H, Kishimoto T (2000) Effect of TEI-9874, an inhibitor of immunoglobulin E production, on allergen-induced asthmatic model in rats. Eur J Pharmacol 402: 287–295PubMedGoogle Scholar
  104. 104.
    Elliott PJ, Pien CS, McCormack TA, Chapman ID, Adams J (1999) Proteasome inhibition: A novel mechanism to combat asthma. J Allergy Clin Immunol 104: 294–300PubMedGoogle Scholar
  105. 105.
    Eber E, Uhlig T, McMenamin C, Sly PD (1998) Leflunomide, a novel immunomodulating agent, prevents the development of allergic sensitization in an animal model of allergic asthma. Clin Exp Allergy 28: 376–384PubMedGoogle Scholar
  106. 106.
    Hazarika S, Van Scott MR, Lust RM (2004) Myocardial ischemia-reperfusion injury is enhanced in a model of systemic allergy and asthma. Am J Physiol Heart Circ Physiol 286: H1720–1725PubMedGoogle Scholar
  107. 107.
    Gallelli L, D’Agostino B, Marrocco G, De Rosa G, Filippelli W, Rossi F, Advenier C (2003) Role of tachykinins in the bronchoconstriction induced by HCl intraesophageal instillation in the rabbit. Life Sci 72: 1135–1142PubMedGoogle Scholar
  108. 108.
    Hogman M, Hjoberg J, Almirall J, Hedenstierna G (1999) Both inhaled histamine and hypertonic saline increase airway reactivity in non-sensitised rabbits. Respiration 66:349–354PubMedGoogle Scholar
  109. 109.
    Grunstein MM, Veler H, Shan X, Larson J, Grunstein JS, Chuang S (2005) Proasthmatic effects and mechanisms of action of the dust mite allergen, Der p 1, in airway smooth muscle. J Allergy Clin Immunol 116: 94–101PubMedGoogle Scholar
  110. 110.
    Grunstein MM, Hakonarson H, Maskeri N, Chuang S (2000) Autocrine cytokine signaling mediates effects of rhinovirus on airway responsiveness. Am J Physiol Lung Cell Mol Physiol 278: L1146–1153PubMedGoogle Scholar
  111. 111.
    Whelan R, Kim C, Chen M, Leiter J, Grunstein MM, Hakonarson H (2004) Role and regulation of interleukin-1 molecules in pro-asthmatic sensitised airway smooth muscle. Eur Respir J 24: 559–567PubMedGoogle Scholar
  112. 112.
    Gascoigne MH, Holland K, Page CP, Shock A, Robinson M, Foulkes R, Gozzard N (2003) The effect of anti-integrin monoclonal antibodies on antigen-induced pulmonary inflammation in allergic rabbits. Pulm Pharmacol Ther 16: 279–285PubMedGoogle Scholar
  113. 113.
    Obiefuna PC, Batra VK, Nadeem A, Borron P, Wilson CN, Mustafa SJ (2005) A novel A1 adenosine receptor antagonist, L-97-1 [3-[2-(4-aminophenyl)-ethyl]-8-benzyl-7-{2-ethyl-(2-hydroxy-ethyl)-amino]-ethyl}-1-propyl-3,7-dihydro-purine-2,6-dione], reduces allergic responses to house dust mite in an allergic rabbit model of asthma. J Pharmacol Exp Ther 315: 329–336PubMedGoogle Scholar
  114. 114.
    Woisin FE, Matsumoto T, Douglas GJ, Paul W, Whalley ET, Page CP (2000) Effect of antagonists for NK(2)and B(2) receptors on antigen-induced airway responses in allergic rabbits. Pulm Pharmacol Ther 13: 13–23PubMedGoogle Scholar
  115. 115.
    Assa’ad AH, Ballard ET, Sebastian KD, Loven DP, Boivin GP, Lierl MB (1998) Effect of superoxide dismutase on a rabbit model of chronic allergic asthma. Ann Allergy Asthma Immunol 80: 215–224PubMedGoogle Scholar
  116. 116.
    Tiniakov RL, Tiniakova OP, McLeod RL, Hey JA, Yeates DB (2003) Canine model of nasal congestion and allergic rhinitis. J Appl Physiol 94: 1821–1828PubMedGoogle Scholar
  117. 117.
    Skorohod N, Yeates DB (2005) Superoxide dismutase failed to attenuate allergen-induced nasal congestion in ragweed-sensitized dogs. J Appl Physiol 98: 1478–1486PubMedGoogle Scholar
  118. 118.
    House A, Celly C, Young S, Kreutner W, Chapman RW (2001) Bronchoconstrictor reactivity to NKA in allergic dogs: a comparison to histamine and methacholine. Pulm Pharmacol Ther 14: 135–140PubMedGoogle Scholar
  119. 119.
    Redman TK, Rudolph K, Barr EB, Bowen LE, Muggenburg BA, Bice DE (2002) Pulmonary immunity to ragweed in a Beagle dog model of allergic asthma. Exp Lung Res 27: 433–451Google Scholar
  120. 120.
    Barrett EG, Rudolph K, Bowen LE, Bice DE (2003) Parental allergic status influences the risk of developing allergic sensitization and an asthmatic-like phenotype in canine offspring. Immunology 110: 493–500PubMedGoogle Scholar
  121. 121.
    Freed AN, Davis MS (1999) Hyperventilation with dry air increases airway surface fluid osmolality in canine peripheral airways. Am J Respir Crit Care Med 159: 1101–1107PubMedGoogle Scholar
  122. 122.
    Suzuki R, Freed AN (2000) Heparin inhibits eicosanoid metabolism and hyperventilation-induced bronchoconstriction in dogs. Am J Respir Crit Care Med 161: 1850–1854PubMedGoogle Scholar
  123. 123.
    Davis MS, Schofield B, Freed AN (2003) Repeated peripheral airway hyperpnea causes inflammation and remodeling in dogs. Med Sci Sports Exerc 35: 608–616PubMedGoogle Scholar
  124. 124.
    Abraham WM, Ahmed A, Sabater JR, Lauredo IT, Botvinnikova Y, Bjercke RJ, Hu X, Revelle BM, Kogan TP, Scott IL et al (1999) Selectin blockade prevents antigen-induced late bronchial responses and airway hyperresponsiveness in allergic sheep. Am J Respir Crit Care Med 159: 1205–1214PubMedGoogle Scholar
  125. 125.
    Abraham WM, Gill A, Ahmed A, Sielczak MW, Lauredo T, Botinnikova Y, Lin KC, Pepinsky B, Leone D, Lobb RR, Adams SP (2000) A small molecule, tight binding inhibitor of the integrin alpha4 beta1 blocks antigen-induced airway responses and inflammation inexperimental asthma in sheep. Am J Respir Care Med 162: 603–611Google Scholar
  126. 126.
    Abraham WM, Bourdelais AJ, Sabater JR, Ahmed A, Lee TA, Serebriakov I, Baden DG (2005) Airway responses to aerosolized brevetoxins in an animal model of asthma. Am J Respir Crit Care Med 171: 26–34PubMedGoogle Scholar
  127. 127.
    O’Riordan TG, Mao Y, Otero R, Lopez J, Sabater JR, Abraham WM (1998) Budesonide affects allergic mucociliary dysfunction. J Appl Physiol 85: 1086–1091PubMedGoogle Scholar
  128. 128.
    Costanza MJ, Yabut SC, Almond HR, Andrade-Gordon P, Corcoran TW, de Garavilla L, Kauffman JA, Abraham WM, Recacha R, Chattopadhyay D, Maryanoff BE (2003) Potent, small molecule inhibitors of human mast cell tryptase. Antiasthmatic action of a dipeptide-based transition state analogue containing a benzothiazole ketone. J Med Chem 46: 3865–3876Google Scholar
  129. 129.
    Krishna MT, Chauhan A, Little L, Sampson K, Hawksworth R, Mant T, Djukanovic R, Lee T, Holgate S (2001) Inhibition of mast cell tryptase by inhaled APC 366 attenuates allergen-induced late-phase airway obstruction in asthma. J Allergy Clin Immunol 107:1039–1045PubMedGoogle Scholar
  130. 130.
    Ahmed T, Ungo J, Zhou M, Campo C (2000) Inhibition of allergic late airway responses by inhaled heparin-derived oligosaccharides. J Appl Physiol 88: 1721–1729PubMedGoogle Scholar
  131. 131.
    Scuri M, Allegra L, Abraham WM (1998) The effects of multiple dosing with zileuton on antigen-induced responses in sheep. Pulm Pharmacol Ther 11: 277–280PubMedGoogle Scholar
  132. 132.
    Sabater JR, Wanner A, Abraham WM (2002) Montelukast prevents antigen-induced mucociliary dysfunction in sheep. Am J Respir Crit Care Med 166: 1457–1460PubMedGoogle Scholar
  133. 133.
    Lauredo IT, Forteza RM, Botvinnikova Y, Abraham WM (2004) Leukocytic cell sources of airway tissue kallikrein. Am J Physiol Lung Cell Mol Physiol 286: L734–740PubMedGoogle Scholar
  134. 134.
    Bischoff R, Snibson K, Shaw R, Meeusen EN (2003) Induction of allergic inflammation in the lungs of sensitized sheep after local challenge with house dust mite. Clin Exp Allergy 33: 367–375Google Scholar
  135. 135.
    Snibson KJ, Bischof RJ, Slocombe RF, Meeusen EN (2005) Airway remodelling and inflammation in sheep lungs after chronic airway challenge with house dust mite. Clin Exp Allergy 35: 146–152PubMedGoogle Scholar
  136. 136.
    Singh J, van Vlijmen H, Liao Y, Lee WC, Cornebise M, Harris M, Shu I, Gill A, Cuervo JH, Abraham WM, Adams SP (2002)Identification of potent and novel alpha4 beta1 antagonists using in silico screening. J Med Chem 45: 2988–2993PubMedGoogle Scholar
  137. 137.
    Abraham WM, Ahmed A, Serebriakov I, Carmillo AN, Ferrant J, de Fougerolles AR, Garber EA, Gotwals PJ, Koteliansky VE, Taylor F, Lobb RR (2003) A monoclonal antibody to alpha1 beta1 blocks antigen-induced airway responses in sheep. Am J Respir Crit Care Med 169: 97–104PubMedGoogle Scholar
  138. 138.
    Rosen SD, Tsay D Singer MS, Hemmerich S, Abraham WM (2005) Therapeutic targeting of endothelial ligands for L-selectin (PNAd) in a sheep model of asthma. Am J Pathol 166: 935–944PubMedGoogle Scholar
  139. 139.
    Kasserra CE, Harris P, Stenton GR, Abraham W, Langlands JM (2004) IPL576,092, a novel anti-inflammatory compound, inhibits leukocyte infiltration and changes in lung function in response to allergen challenge. Pulm Pharmacol Ther 17: 309–318PubMedGoogle Scholar
  140. 140.
    Freyne EJ, Lacrampe JF, Deroose F, Boeckx GM, Willems M, Embrechts W, Coesemans E, Willems JJ, Fortin JM, Ligney Y et al (2005) Synthesis and biological evaluation of 1,2,4-triazinylphenylalkylthiazolecarboxylic acid esters as cytokine-inhibiting antidrugs with strong bronchodilating effects in an animal model of asthma. J Med Chem 48:2167–2175PubMedGoogle Scholar
  141. 141.
    Fujimoto K, Tsunoda T, Koizumi T, Kubo K (2002) Effects of an eosinophil allergic sheep. Lung 180: 161–172PubMedGoogle Scholar
  142. 142.
    Black KR, Suki B, Madwed JB, Jackson AC (2001) Airway resistance and tissue elastance from input or transfer impedance in bronchoconstricted monkeys. J Appl Physiol 90: 571–578PubMedGoogle Scholar
  143. 143.
    Schelegle ES, Gershwin LJ, Miller LA, Fanucchi MV, Van Winkle LS, Gerriets JP, Walby WF, Omlor AM, Buckpitt AR, Tarkington BK et al (2001) Allergic asthma induced in rhesus monkeys by house dust mite (Dermatophagoides farinae). Am J Pathol 158:333–341PubMedGoogle Scholar
  144. 144.
    Coffman RL, Hessel EM (2005) Nonhuman primate models of asthma. J Exp Med 201:1875–1879PubMedGoogle Scholar
  145. 145.
    Van Scott MR, Hooker JL, Ehrmann D, Shibata Y Kukoly C, Salleng K, Westergaard G, Sandrasagra A Nyce J (2004) Dust mite-induced asthma in cynomolgus monkeys. J Appl Physiol 96: 1433–1444PubMedGoogle Scholar
  146. 146.
    Van Scott MR, Aycock D, Cozzi E, Salleng K, Stallings HW (2005) Separation of bronchoconstriction from increased ventilatory drive in a nonhuman primate model of chronic allergic asthma. J Appl Physiol 99: 2080–2086PubMedGoogle Scholar
  147. 147.
    Hart TK, Cook RM, Zia-Amirhosseini P, Minthorn E, Sellers TS, Maleeff BE, Eustis S, Schwartz LW, Tsui P, Applebaum ER et al (2001) Preclinical efficacy and safety of mepolizumab (SB-240563), a humanized monoclonal antibody to IL-5, in cynmolgus monkeys. J Allergy Clin Immunol 108: 250–257PubMedGoogle Scholar
  148. 148.
    Fanucchi MV, Schelegle ES, Baker GL, Evans MJ, NcDonald RJ, Gershwin LJ, Raz E, Hyde DM, Plopper CG, Miller LA (2004) Immunostimulatory oligonucleotides attenuate airways remodeling in allergic monkeys. Am J Resp Crit Care Med 170: 1153–1157PubMedGoogle Scholar
  149. 149.
    Buchheit KH, Manley PW, Quast U, Russ U, Mazzoni L, Fozard JR (2002) KCO912: a potent and selective opener of ATP-dependent potassium (K(ATP)) channels which suppresses airways hyperreactivity at doses devoid of cardiovascular effects. Naunyn Schmiedebergs Arch Pharmacol 365: 220–230PubMedGoogle Scholar
  150. 150.
    Billah MM, Cooper N, Minnicozzi M, Warneck J, Wang P, Hey JA, Kreutner W, Rizzo CA, Smith SR, Young S et al (2002) Pharmacology of N-(3,5-dichloro-1-oxido-4-pyridinyl)-8-methoxy-2-(trifluoromethyl)-5-quinoline carboxamide (SCH 351591), a novel, orally active phosphodiesterase 4 inhibitor. J Pharmacol Exp Ther 302: 127–137PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • William M. Selig
    • 1
  • Eric T. Whalley
    • 2
  • James L. Ellis
    • 3
  1. 1.NitroMed IncLexingtonUSA
  2. 2.BiogenIdecCambridgeUSA
  3. 3.Surface Logix IncBrightonUSA

Personalised recommendations