Asymptotic Stability of Steady-states for Saint-Venant Equations with Real Viscosity

  • Corrado Mascia
  • Frederic Rousset
Part of the Advances in Mathematical Fluid Mechanics book series (AMFM)


Green Function Asymptotic Stability Nonlinear Stability Resolvent Equation Resolvent Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gerbeau J.-F., Perthame B., Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst. Ser. B 1 (2001), no. 1, 89–102.MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Mascia C., Zumbrun K., Pointwise Green function bounds for shock profiles of systems with real viscosity, Arch. Ration. Mech. Anal. 169 (2003), no. 3, 177–263.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Mascia C., Zumbrun K., Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Arch. Ration. Mech. Anal. 172 (2004), no. 1, 93–131.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    de Saint-Venant A.J.C., Théorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l’introduction des marées dans leur lit, C. R. Acad. Sci. Paris 73 (1871), 147–154.Google Scholar
  5. [5]
    Zumbrun K., Howard P., Pointwise semigroup methods and stability of viscous shock waves Indiana Univ. Math. J. 47 (1998), no. 3, 741–871.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Corrado Mascia
    • 1
  • Frederic Rousset
    • 2
  1. 1.Dipartimento di Matematica “G. Castelnuovo”University of Rome “La Sapienza”Rome
  2. 2.CNRSUniversity of Nice — Sophia AntipolisNice

Personalised recommendations