Skip to main content

The Reduced Basis Element Method for Fluid Flows

  • Conference paper
Analysis and Simulation of Fluid Dynamics

Abstract

The reduced basis element approximation is a discretization method for solving partial differential equations that has inherited features from the domain decomposition method and the reduced basis approximation paradigm in a similar way as the spectral element method has inherited features from domain decomposition methods and spectral approximations. We present here a review of the method directed to the application of fluid flow simulations in hierarchical geometries. We present the rational and the basics of the method together with details on the implementation. We illustrate also the rapid convergence with numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.O. Almroth, P. Stern, F.A. Brogan — Automatic choice of global shape functions in structural analysis. AIAA Journal, 16 (1978) 525–528.

    Article  Google Scholar 

  2. L. Baffico, C. Grandmont, Y. Maday, and A. Osses — Homogenization of an elastic media with gaseous bubbles, in preparation.

    Google Scholar 

  3. F. Brezzi and M. Fortin — Mixed and Hybrid Finite Element Methods. Springer Verlag, 1991.

    Google Scholar 

  4. M. Briane, Y. Maday, and F. Madigou — Homogenization of a two-dimensional fractal conductivity, in preparation.

    Google Scholar 

  5. C. Fetita, S.M., D. Perchet, F. Prêteux, M. Thiriet, and L. Vial — An image-based computational model of oscillatory flow in the proximal part of tracheobronchial trees, Computer Methods in Biomechanics and Biomedical Engineering, 8(4), 279–293, (2005).

    Article  Google Scholar 

  6. J.P. Fink and W.C. Rheinboldt — On the error behavior of the reduced basis technique for nonlinear finite element approximations. Zeitschrift für Angewandte Mathematik und Mechanik, 63(1), (1983) 21–28.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.L. Fox and H. Miura — An approximate analysis technique for design calculations. AIAA Journal, 9(1), (1971) 177–179.

    Google Scholar 

  8. M.B. Giles and E. Süli — Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica, Vol. 11, 145–236, Cambridge University Press, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  9. V. Girault, P.A. Raviart — Finite element methods for Navier-Stokes equations: Theory and algorithms, (Springer Series in Computational Mathematics. Volume 5), Berlin and New York, Springer-Verlag (1986)

    Google Scholar 

  10. W. Gordon and C. Hall — Transfinite element methods: blending-function interpolation over arbitrary curved element domains, Numer. Math. (21), 1973/74, pp. 109–129.

    Article  MATH  MathSciNet  Google Scholar 

  11. C. Grandmont, Y. Maday, and B. Maury — A multiscale/multimodel approach of the respiration tree, in New Trends in Continuum Mechanics — M. Mihailescu-Suliciu, Ed. — Theta Foundation, Bucharest, Romania (2005).

    Google Scholar 

  12. M.A. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera — Efficient reduced basis treatment of non-affine and nonlinear partial differential equations, submitted to M2AN (2006).

    Google Scholar 

  13. A.E. Løvgren, Y. Maday, and E.M. Rønquist — A reduced basis element method for the steady Stokes problem, to appear in M2AN.

    Google Scholar 

  14. A.E. Løvgren, Y. Maday, and E.M. Rønquist — in progress.

    Google Scholar 

  15. L. Machiels, Y. Maday, I.B Oliveira, A.T. Patera, and D.V. Rovas — Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, CR Acad Sci Paris Series I 331:(2000) 153–158.

    MATH  MathSciNet  Google Scholar 

  16. Y. Maday, A.T. Patera, and G. Turinici — A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations, J. Sci. Comput., 17 (2002), no. 1–4, 437–446.

    Article  MATH  MathSciNet  Google Scholar 

  17. Y. Maday, L. Machiels, A.T. Patera, and D.V. Rovas — Blackbox reduced-basis output bound methods for shape optimization, in Proceedings 12th International Domain Decomposition Conference, Chiba, Japan (2000) 429–436.

    Google Scholar 

  18. Y. Maday and E.M. Rønquist — The reduced-basis element method: Application to a thermal fin problem. SIAM Journal on Scientific Computing, 2004.

    Google Scholar 

  19. A.K. Noor and J.M. Peters — Reduced basis technique for nonlinear analysis of structures. AIAA Journal, 18(4) (1980) 455–462.

    Google Scholar 

  20. V. Milisic and A. Quarteroni. Analysis of lumped parameter models for blood flow simulations and their relation with 1D models, to appear in M2AN, 2004.

    Google Scholar 

  21. F. Murat and J. Simon, Sur le Contrôle par un Domaine Géometrique, Publication of the Laboratory of Numerical Analysis, University Paris VI, 1976.

    Google Scholar 

  22. Pinkus, A. — n-Widths in Approximation Theory, Springer-Verlag, Berlin (1985).

    MATH  Google Scholar 

  23. T.A. Porsching — Estimation of the error in the reduced basis method solution of nonlinear equations. Mathematics of Computation. 45(172) (1985) 487–496.

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Prud’homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera, G. Turinici — Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, J. Fluids Engineering, 124, (2002) 70–80.

    Article  Google Scholar 

  25. C. Prud’homme, D.V. Rovas, K. Veroy, and A.T. Patera — A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. Programming. M2AN Math. Model. Numer. Anal. 36 (2002), no. 5, 747–771.

    Article  MathSciNet  Google Scholar 

  26. A. Quarteroni and A. Valli — Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, (1999).

    Google Scholar 

  27. P.A. Raviart and J.M. Thomas. — A mixed finite element method for 2nd order elliptic problems. In I. Galligani and E. Magenes, editors, Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, Vol. 606. Springer-Verlag, 1977.

    Google Scholar 

  28. D.V. Rovas. — Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, October 2002.

    Google Scholar 

  29. M. Thiriet — http://www-rocq.inria.fr/who/Marc.Thiriet/Vitesv/

    Google Scholar 

  30. A. Toselli and O. Widlund — Domain decomposition methods — algorithms and theory, Springer Series in Computational Mathematics, 34, Springer-Verlag, Berlin, (2005).

    MATH  Google Scholar 

  31. R. Verfurth — A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, 1996.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Løvgren, A.E., Maday, Y., Rønquist, E.M. (2006). The Reduced Basis Element Method for Fluid Flows. In: Calgaro, C., Coulombel, JF., Goudon, T. (eds) Analysis and Simulation of Fluid Dynamics. Advances in Mathematical Fluid Mechanics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7742-7_8

Download citation

Publish with us

Policies and ethics