Advertisement

Do Navier-Stokes Equations Enable to Predict Contact Between Immersed Solid Particles?

  • M. Hillairet
Part of the Advances in Mathematical Fluid Mechanics book series (AMFM)

Abstract

We present here a short overview of recent results on a paradox appearing in the area of fluid-solid interactions. This paradox states that, in two space dimensions, strong solutions to viscous models describing fluid-solid interactions do not permit rigid solids inside the fluid to collide.

Keywords

Weak Solution Rigid Body Contact Point Strong Solution Solid Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Desjardins and M.J. Esteban. Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal., 146(1):59–71, 1999.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    E. Feireisl. On the motion of rigid bodies in a viscous fluid. Appl. Math., 47(6):463–484, 2002. Mathematical theory in fluid mechanics (Paseky, 2001).MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    E. Feireisl. On the motion of rigid bodies in a viscous fluid. Appl. Math., 47(6):463–484, 2002. Mathematical theory in fluid mechanics (Paseky, 2001).MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    E. Feireisl. On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal., 167(4):281–308, 2003.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs and. Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985.MATHGoogle Scholar
  6. [6]
    M.D. Gunzburger, H.-C. Lee, and G.A. Seregin. Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech., 2(3):219–266, 2000.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    M. Hillairet. Aspects interactifs de la mécanique des fluides. PhD thesis, Ecole Normale Supérieure de Lyon, 2005.Google Scholar
  8. [8]
    M. Hillairet. Asymptotic collision between solid particles in a Burgers-Hopf fluid. Asymptotic analysis, In press.Google Scholar
  9. [9]
    M. Hillairet and D. Serre. Chute stationnaire d’un solide dans un fluide visqueux incompressible le long d’un plan incliné. Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(5):779–803, 2003.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    M. Hillairet and J.L. Vàzquez. A first no-collision result in two dimensions. In preparation, 2005.Google Scholar
  11. [11]
    J.A. San Martín, V. Starovoitov, and M. Tucsnak. Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal., 161(2):113–147, 2002.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    V.N. Starovoitov. On the nonuniqueness of the solution of the problem of the motion of a rigid body in a viscous incompressible fluid. Zap. Nauchn. Sem. St.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), 306(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funktsii. 34):199–209, 231–232, 2003.Google Scholar
  13. [13]
    V.N. Starovoitov. Behavior of a rigid body in an incompressible viscous fluid near a boundary. In Free boundary problems (Trento, 2002), volume 147 of Internat. Ser. Numer. Math., pages 313–327. Birkhäuser, Basel, 2004.Google Scholar
  14. [14]
    Takéo Takahashi. Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations, 8(12):1499–1532, 2003.MATHMathSciNetGoogle Scholar
  15. [15]
    J.L. Vàzquez and E. Zuazua. Large time behavior for a simplified 1D model of fluid-solid interaction. Comm. Partial Differential Equations, 28(9–10):1705–1738, 2003.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    J.L. Vàzquez and E. Zuazua. Lack of collision in a simplified 1-d model for fluid-solid interaction. Preprint, may 2004.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • M. Hillairet

There are no affiliations available

Personalised recommendations