The Two-Jacobian Scheme for Systems of Conservation Laws

  • Rosa Donat
  • Pep Mulet
Conference paper
Part of the Advances in Mathematical Fluid Mechanics book series (AMFM)


Interface State Riemann Problem Jacobian Matrice Mach Disk Riemann Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Arora and P.L. Roe On post-shock oscillations due to shock capturing schemes in unsteady flows J. Comput. Phys., v. 130, (1997) pp. 25.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    G. Chiavassa and R. Donat, Point Value Multiscale Algorithms for 2D Compressible Flows, SIAM J. Sci. Comp. 23, 805–823 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    G. Chiavassa and R. Donat and A. Marquina, Fine-Mesh Numerical Simulations for 2D Riemann Problems with a Multilevel scheme, Intl. Series of Numerical Mathematics 140 247–256 (2001).MathSciNetGoogle Scholar
  4. 4]
    R. Donat, J.A. Font, J.M. Ibañez and A. Marquina A Flux-Split Algorithm applied to Relativistic Flows. To appear in J. Comput. Phys.Google Scholar
  5. [5]
    R. Donat and A. Marquina, Capturing Shock Reflections: An improved Flux Formula J. Comput. Phys., v. 125, (1996) pp. 42–58.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    B. Einfeldt, On Godunov type methods for Gas Dynamics, SINUM v. 25, (1988) pp. 294–318.zbMATHMathSciNetGoogle Scholar
  7. [7]
    R. Fedkiw, B. Merriman, R. Donat and S. Osher, The Penultimate scheme for Systems of Conservation Laws Innovative methods for numerical solutions of partial differential equations (Arcachon, 1998), 49–85, World Sci. Publishing, River Edge, NJ, (2002).Google Scholar
  8. [8]
    J.-F. Haas and B. Sturtevant, Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J. Fluid. Mech., 181 (1987), pp. 41–76.CrossRefGoogle Scholar
  9. [9]
    A. Harten, P.D. Lax and B. van Leer, On Upstream differencing and Godunov type Schemes for Hyperbolic Conservation Laws, SIAM Review, 25, pp. 35–61 (1983).zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly High Order Accurate Essentially Non-oscillatory Schemes III, J. Comput. Phys., v. 71 No. 2, (1987), pp. 231–303.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    G. Jiang and C. Shu, Efficient implementation of weighted ENO schemes, J. Comp. Phys., 126 (1996), pp. 202–228.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. Karni and S. Canic Computations of Slowly Moving Shocks J. Comput. Phys., v. 136, (1997) pp. 132–139.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    R.J. Leveque Numerical methods for Conservation Laws, Birkhäuser Verlag, Zürich, (1990).zbMATHGoogle Scholar
  14. [14]
    B. Lombard, R. Donat, The explicit simplified interface method for compressible multicomponent flows SIAM J. of Sci. Comp. 27, 208–230 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Marquina and P. Mulet A flux-split algorithm applied to conservative models for multicomponent compressible flows, J. Comput. Phys., v. 185, (2003) pp. 120–138.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    J.M. Martí and E. Müller, J. Comp. Phys. 123, 1 (1996).zbMATHCrossRefGoogle Scholar
  17. [17]
    J.M. Martí, E. Müller, J.A. Font, J.M. Ibáñez and A. Marquina, Astrophys. J., 479 151–163 (1997)CrossRefGoogle Scholar
  18. [18]
    J.M. Martí, E. Müller and J.M. Ibáñez, Astron. Astrophys., 281, L9 (1994).Google Scholar
  19. [19]
    B. Merriman Understanding the Shu-Osher conservative finite difference form, J. Sci. Comput., v. 19, (2003) pp. 309–322.zbMATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    W.F. Noh, Errors for the Calculations of Strong Shocks using an artificial viscosity and an artificial heat flux, J. Comput. Phys., v. 72, (1987) pp. 78–120.zbMATHCrossRefGoogle Scholar
  21. [21]
    S. Osher, F. Solomon, Upwind difference schemes for hyperbolic systems of Conservation Laws, Math. Comput., v. 38, (1982) pp. 339–374.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    J. Quirk, A contribution to the great Riemann Solver debate, Intl. J. Num. Meth. Fluids, v. 18 (1994) pp. 555–574. Also ICASE Report 92-64 (1992).zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    J. Quirk and S. Karni, On the dynamics of a shock-bubble interaction, J. Fluid. Mech., 318 (1996), pp. 129–163.zbMATHCrossRefGoogle Scholar
  24. [24]
    M. Pandolfi and D. D’Ambrosio Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon, J. Comput. Phys., v. 166, (2001) pp. 271–301.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    K.M. Peery and S.T. Imlay, Blunt Body Flow Simulations, AAIA paper 88-2904.Google Scholar
  26. [26]
    A. Rault, G. Chiavassa and R. Donat, Shock-Vortex Interactions at High Mach Numbers Journal of Scientific Computing, 19 347–371 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    T.W. Roberts, The behavior of flux-difference splitting schemes near slowly moving shock waves, J. Comput. Phys. v. 90 (1990) pp. 141–160.zbMATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    C.W. Shu and S.J. Osher, Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes II, J. Comput. Phys., v. 83, (1989) pp. 32–78.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    J. Steger and R.F. Warming Flux Vector Splitting of the Inviscid Gasdynamics Equations with Application to Finite Difference Methods, J. Comput. Phys., v. 40, (1981) pp. 263–293.zbMATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Y. Stiriba, R. Donat, A Numerical Study of Post Shock Oscillations in Slowly Moving Shock Waves, Computer and Mathematics with Applications, 46, pp. 719–739 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  31. [31]
    Y. Stiriba, A. Marquina and R. Donat ‘Equilibrium real gas computations using Marquina’s scheme International J. for Numerical Methods in Fluids, 41 275–301 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    B. Van Leer, Flux-vector splitting for the Euler equations, presented at the 8th international Conference on Numerical Methods for Engineering, Aachen, June 1982.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Rosa Donat
    • 1
  • Pep Mulet
    • 1
  1. 1.Departament de Matemática AplicadaUniversitat de ValènciaBurjassot (València)Spain

Personalised recommendations