Skip to main content

Recent Mathematical Results and Open Problems about Shallow Water Equations

  • Conference paper
Analysis and Simulation of Fluid Dynamics

Abstract

The purpose of this work is to present recent mathematical results about the shallow water model. We will also mention related open problems of high mathematical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Agmon, A. Douglis, L. Nirenberg. Estimates near the boundary for solutions of elliptic partial differential equations I, Comm. Pures and Appl. Math., 12, (1959), 623–727.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Agmon, A. Douglis, L. Nirenberg. Estimates near the boundary for solutions of elliptic partial differential equations II, Comm. Pures and Appl. Math., 17, (1964), 35–92.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Bernardi, O. Pironneau. On the shallow water equations at low Reynolds number. Commun. Partial Diff. Eqs. 16, 59–104 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  4. A.L. Bertozzi, A.J. Majda. Vorticity and incompressible flows. Cambridge University Press, (2001).

    Google Scholar 

  5. P. Bolley, J. Camus, G. Métivier, Estimations de Schauder et régularité Hölderienne pour une classe de problèmes aux limites singuliers, Comm. Partial Diff. Equ. 11 (1986), 1135–1203.

    Article  MATH  Google Scholar 

  6. F. Bouchut, A. Mangeney-Castelnau, B. Perthame, J.P. Vilotte. A new model of Saint-Venant and Savage-Hutter type for gravity driven shallow water flows. C.R. Acad. Sci. Paris, série I, 336(6):531–536, (2003).

    MATH  MathSciNet  Google Scholar 

  7. F. Bouchut, M. Westdickenberg. Gravity driven shallow water models for arbitrary topography. Comm. in Math. Sci., 2(3):359–389, (2004).

    MATH  MathSciNet  Google Scholar 

  8. D. Bresch, B. Desjardins. Numerical approximation of compressible fluid models with density dependent viscosity. In preparation (2005).

    Google Scholar 

  9. D. Bresch, B. Desjardins, J.-M. Ghidaglia. On bi-fluid compressible models. In preparation (2005).

    Google Scholar 

  10. D. Bresch, B. Desjardins. Existence globale de solutions pour les équations de Navier-Stokes compressibles complètes avec conduction thermique. C. R. Acad. Sci., Paris, Section mathématiques. Submitted (2005).

    Google Scholar 

  11. D. Bresch, B. Desjardins. Some diffusive capillary models of Korteweg type. C.R. Acad. Sciences, Paris, Section Mécanique. Vol. 332 no. 11 (2004), pp. 881–886.

    Google Scholar 

  12. D. Bresch, B. Desjardins. Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys., 238,1–2, (2003), pp. 211–223.

    MATH  MathSciNet  Google Scholar 

  13. D. Bresch, M. Gisclon, C.K. Lin. An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit. M2AN, Vol. 39, No 3, pp. 477–486, (2005).

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Bresch, A. Juengel, H.-L. Li, Z.P. Xin. Effective viscosity and dispersion (capillarity) approximations to hydrodynamics. Forthcoming paper, (2005).

    Google Scholar 

  15. D. Bresch, G. Métivier. Global existence and uniqueness for the lake equations with vanishing topography: elliptic estimates for degenerate equations. To appear in Nonlinearity, (2005).

    Google Scholar 

  16. D. Bresch, B. Desjardins, C.K. Lin. On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm. Partial Differential Equations, 28,3–4, (2003), p. 1009–1037.

    MathSciNet  Google Scholar 

  17. A.T. Bui. Existence and uniqueness of a classical solution of an initial boundary value problem of the theory of shallow waters. SIAM J. Math. Anal. 12 (1981) 229–241.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.F. Chatelon, P. Orenga. Some smoothness and uniqueness for a shallow water problem. Adv. Diff. Eqs., 3,1 (1998), 155–176.

    MATH  MathSciNet  Google Scholar 

  19. C. Cheverry. Propagation of oscillations in Real Vanishing Viscosity Limit, Commun. Math. Phys. 247, 655–695 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Coutand, S. Shkoller. Unique solvability of the free-boundary Navier-Stokes equations with surface tension, Arch. Rat. Mech. Anal. (2005).

    Google Scholar 

  21. D. Coutand, S. Shkoller. Well-posedness of the free-surface incompressible Euler equations with or without surface tension, Submitted (2005).

    Google Scholar 

  22. E. Feireisl. Dynamics of viscous compressible fluids. Oxford Science Publication, Oxford, (2004).

    MATH  Google Scholar 

  23. P.R. Gent. The energetically consistent shallow water equations. J. Atmos. Sci., 50, 1323–1325, (1993).

    Article  Google Scholar 

  24. J.F. Gerbeau, B. Perthame. Derivation of Viscous Saint-Venant System for Laminar Shallow Water; Numerical Validation, Discrete and Continuous Dynamical Systems, Ser. B, Vol. 1, Num. 1, 89–102, (2001).

    MATH  MathSciNet  Google Scholar 

  25. C. Goulaouic, N. Shimakura, Régularité Höldérienne de certains problèmes aux limites dégénérés, Ann. Scuola Norm. Sup. Pisa, 10, (1983), 79–108.

    MathSciNet  Google Scholar 

  26. P. Gwiazda. An existence result for a model of granular material with non-constant density. Asymptotic Analysis, 30

    Google Scholar 

  27. D. Hoff, D. Serre. The failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flow. SIAM J. Appl. Math., 51(4):887–898, (1991).

    Article  MATH  MathSciNet  Google Scholar 

  28. A.V. Kazhikhov, Initial-boundary value problems for the Euler equations of an ideal incompressible fluid. Moscow Univ. Math. Bull. 46 (1991), no. 5, 10–14.

    MATH  MathSciNet  Google Scholar 

  29. A.V. Kazhikhov, A. Veigant. Global solutions of equations of potential fluids for small Reynolds number. Diff. Eqs., 30, (1994), 935–947.

    MATH  Google Scholar 

  30. P.E. Kloeden, Global existence of classical solutions in the dissipative shallow water equations. SIAM J. Math. Anal. 16 (1985), 301–315.

    Article  MATH  MathSciNet  Google Scholar 

  31. D. Levermore, M. Oliver, E.S. Titi, Global well-posedness for models of shallow water in a basin with a varying bottom, Indiana Univ. Math. J. 45 (1996), 479–510.

    Article  MATH  MathSciNet  Google Scholar 

  32. D. Levermore, B. Sammartino. A shallow water model in a basin with varying bottom topography and eddy viscosity, Nonlinearity, Vol. 14, n. 6, 1493–1515 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Li, Z.P. Xin. Some Uniform Estimates and Blowup Behavior of Global Strong Solutions to the Stokes Approximation Equations for Two-Dimensional Compressible Flows. To appear in J. Diff. Eqs. (2005)

    Google Scholar 

  34. P.-L. Lions. Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford, (1998).

    Google Scholar 

  35. P.-L. Lions, B. Perthame, P. E. Souganidis, Existence of entropy solutions to isentropic gas dynamics System. Comm. Pure Appl. Math. 49 (1996), no. 6, 599–638.

    Article  MATH  MathSciNet  Google Scholar 

  36. A. Majda. Introduction to PDEs and waves for the atmosphere and ocean. Courant lecture notes in Mathematics, (2003).

    Google Scholar 

  37. F. Marche. Derivation of a new two-dimensional shallow water model with varying topography, bottom friction and capillary effects. Submitted (2005).

    Google Scholar 

  38. A. Mellet, A. Vasseur. On the isentropic compressible Navier-Stokes equation. Submitted (2005).

    Google Scholar 

  39. L. Min, A. Kazhikhov, S. Ukai. Global solutions to the Cauchy problem of the Stokes approximation equations for two-dimensional compressible flows. Comm. Partial Diff. Eqs., 23,5–6, (1998), 985–1006.

    MATH  MathSciNet  Google Scholar 

  40. M.L. Muoz-Ruiz, F.-J. Chatelon, P. Orenga. On a bi-layer shallow-water problem. Nonlinear Anal. Real World Appl. 4 (2003), no. 1, 139–171.

    Article  MathSciNet  Google Scholar 

  41. A. Novotny, I. Straskraba. Introduction to the mathematical theory of compressible flow. Oxford lecture series in Mathematics and its applications, (2004).

    Google Scholar 

  42. M. Oliver, Justification of the shallow water limit for a rigid lid flow with bottom topography, Theoretical and Computational Fluid Dynamics 9 (1997), 311–324.

    Article  MATH  Google Scholar 

  43. P. Orenga. Un théorème d’existence de solutions d’un problème de shallow water, Arch. Rational Mech. Anal. 130 (1995) 183–204.

    Article  MATH  MathSciNet  Google Scholar 

  44. L. Sundbye. Existence for the Cauchy Problem for the Viscous Shallow Water Equations. Rocky Mountain Journal of Mathematics, 1998, 28(3), 1135–1152.

    Article  MATH  MathSciNet  Google Scholar 

  45. L. Sundbye. Global existence for Dirichlet problem for the viscous shallow water equations. J. Math. Anal. Appl. 202 (1996), 236–258.

    Article  MATH  MathSciNet  Google Scholar 

  46. J.-P. Vila. Shallow water equations for laminar flows of newtonian fluids. Paper in preparation and private communication, (2005).

    Google Scholar 

  47. W. Wang, C.-J. Xu. The Cauchy problem for viscous shallow water equations Rev. Mat. Iberoamericana 21, no. 1 (2005), 1–24.

    MathSciNet  Google Scholar 

  48. V.I. Yudovich. The flow of a perfect, incompressible liquid through a given region. Soviet Physics Dokl. 7 (1962) 789–791.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Bresch, D., Desjardins, B., Métivier, G. (2006). Recent Mathematical Results and Open Problems about Shallow Water Equations. In: Calgaro, C., Coulombel, JF., Goudon, T. (eds) Analysis and Simulation of Fluid Dynamics. Advances in Mathematical Fluid Mechanics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7742-7_2

Download citation

Publish with us

Policies and ethics