Advertisement

Some Recent Asymptotic Results in Fluid Mechanics

  • Thomas Alazard
Conference paper
Part of the Advances in Mathematical Fluid Mechanics book series (AMFM)

Abstract

The general equations of fluid mechanics are the law of mass conservation, the Navier-Stokes equation, the law of energy conservation and the laws of thermodynamics. These equations are merely written in this generality. Instead, one often prefers simplified forms. To obtain reduced systems, the easiest route is to introduce dimensionless numbers which quantify the importance of various physical processes. Many recent works are devoted to the study of the classical solutions when such a dimensionless number goes to zero. A few results in this field are here reviewed.

Keywords

Fluid Mechanics Euler System Compressible Euler Equation Incompressible Limit Relaxation Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Alazard — “Alentours de la limite incompressible”, in Séminaire: Équations aux Dérivées Partielles, 2004–2005, École Polytech., 2005, Exp. No. XXIV.Google Scholar
  2. [2]
    T. Alazard — “Incompressible limit of the nonisentropic Euler equations with solid wall boundary conditions”, Adv. in Differential Equations 10 (2005), p. 19–44.MathSciNetMATHGoogle Scholar
  3. [3]
    T. Alazard — “Low Mach number of the full Navier-Stokes equations”, Arch. Ration. Mech. Anal. (2005), in press.Google Scholar
  4. [4]
    T. Alazard — “Low Mach number flows, and combustion”, preprint.Google Scholar
  5. [5]
    S. Alinhac — “Temps de vie des solutions régulières des équations d’Euler compressibles axisymétriques en dimension deux”, Invent. Math. 111 (1993), no. 3, p. 627–670.CrossRefMathSciNetMATHGoogle Scholar
  6. [6]
    D. Bresch, D. Gérard-Varet & E. Grenier — “Derivation of the planetary geostrophic equations”, preprint ENS, 2005.Google Scholar
  7. [7]
    F. Charve — “Etude de phénomènes dispersifs en mécanique des fluides géophysiques”, Thèse de doctorat de l’école Polytechnique, 2004.Google Scholar
  8. [8]
    F. Charve — “Global well-posedness and asymptotics for a geophysical fluid system”, Comm. Partial Differential Equations 29 (2004), no. 11–12, p. 1919–1940.MathSciNetMATHGoogle Scholar
  9. [9]
    F. Charve — “Convergence of weak solutions for the primitive system of the quasigeostrophic equations”, Asymptot. Anal. 42 (2005), no. 3–4, p. 173–209.MathSciNetMATHGoogle Scholar
  10. [10]
    J.-Y. Chemin, B. Desjardins, I. Gallagher & E. Grenier — “Basis of mathematical geophysics”, to appear, 2005.Google Scholar
  11. [11]
    C. Cheverry — “Propagation of oscillations in real vanishing viscosity limit”, Comm. Math. Phys. 247 (2004), no. 3, p. 655–695.CrossRefMathSciNetMATHGoogle Scholar
  12. [12]
    C. Cheverry, O. Guès & G. Métivier — “Oscillations fortes sur un champ linéairement dégénéré”, Ann. Sci. École Norm. Sup. (4) 36 (2003), no. 5, p. 691–745.MATHGoogle Scholar
  13. [13]
    C. Cheverry, O. Guès & G. Métivier — “Large-amplitude high-frequency waves for quasilinear hyperbolic systems”, Adv. Differential Equations 9 (2004), no. 7–8, p. 829–890.MathSciNetMATHGoogle Scholar
  14. [14]
    J.-F. Coulombel & T. Goudon — “The strong relaxation limit of multidimensional isothermal euler equations”, to appear in Trans. Am. Soc., 2005.Google Scholar
  15. [15]
    R. Danchin — “Global existence in critical spaces for flows of compressible viscous and heat-conductive gases”, Arch. Ration. Mech. Anal. 160 (2001), no. 1, p. 1–39.CrossRefMathSciNetMATHGoogle Scholar
  16. [16]
    R. Danchin — “Zero Mach number limit for compressible flows with periodic boundary conditions”, Amer. J. Math. 124 (2002), no. 6, p. 1153–1219.CrossRefMathSciNetMATHGoogle Scholar
  17. [17]
    R. Danchin — “Zero Mach number limit in critical spaces for compressible Navier-Stokes equations”, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 1, p. 27–75.MathSciNetMATHGoogle Scholar
  18. [18]
    R. Danchin — “Low mach number limit for viscous compressible flows”, in special issue vol. 39 No. 3 (May–June 2005), M2AN Math. Model. Numer. Anal., 2005.Google Scholar
  19. [19]
    B. Desjardins & E. Grenier — “Low Mach number limit of viscous compressible flows in the whole space”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1986, p. 2271–2279.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    B. Desjardins, E. Grenier, P.-L. Lions & N. Masmoudi — “Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions”, J. Math. Pures Appl. (9) 78 (1999), no. 5, p. 461–471.CrossRefMathSciNetGoogle Scholar
  21. [21]
    A. Dutrifoy & T. Hmidi — “The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data”, Comm. Pure Appl. Math. 57 (2004), no. 9, p. 1159–1177.CrossRefMathSciNetMATHGoogle Scholar
  22. [22]
    I. Gallagher — “Résultats récents sur la limite incompressible”, Séminaire Bourbaki 2003–2004 Exp. No. 926.Google Scholar
  23. [23]
    I. Gallagher & L. Saint-Raymond — “On pressureless gases driven by a strong inhomogeneous magnetic field”, SIAM J. Math. Anal. 36 (2005), no. 4, p. 1159–1176.CrossRefMathSciNetMATHGoogle Scholar
  24. [24]
    I. GALLAGHER & L. SAINT-RAYMOND — “Résultats asymptotiques pour des fluides en rotation inhomogène, in Séminaire: Équations aux Dérivées Partielles, 2003–2004, École Polytech., 2004, Exp. No. III.Google Scholar
  25. [25]
    P. Godin — “The lifespan of a class of smooth spherically symmetric solutions of the compressible euler equations with variable entropy in three space dimensions several spaces variables”, Arch. Ration. Mech. Anal. 177 (2005), no. 3, p. 479–511.CrossRefMathSciNetMATHGoogle Scholar
  26. [26]
    B. Hanouzet & R. Natalini — “Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy”, Arch. Ration. Mech. Anal. 169 (2003), no. 2, p. 89–117.CrossRefMathSciNetMATHGoogle Scholar
  27. [27]
    D. Hoff — “The zero-Mach limit of compressible flows”, Comm. Math. Phys. 192 (1998), no. 3, p. 543–554.CrossRefMathSciNetMATHGoogle Scholar
  28. [28]
    P.-L. Lions & N. Masmoudi — “Incompressible limit for a viscous compressible fluid”, J. Math. Pures Appl. (9) 77 (1998), no. 6, p. 585–627.MathSciNetMATHGoogle Scholar
  29. [29]
    A. MajdaCompressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984.MATHGoogle Scholar
  30. [30]
    M. Majdoub & M. Paicu — “Uniform local existence for inhomogeneous rotating fluid equations”, in preparation, 2005.Google Scholar
  31. [31]
    G. Métivier & S. Schochet — “The incompressible limit of the non-isentropic Euler equations”, Arch. Ration. Mech. Anal. 158 (2001), no. 1, p. 61–90.CrossRefMathSciNetMATHGoogle Scholar
  32. [32]
    G. Métivier & S. Schochet — “Averaging theorems for conservative systems and the weakly compressible Euler equations”, J. Differential Equations 187 (2003), no. 1, p. 106–183.CrossRefMathSciNetMATHGoogle Scholar
  33. [33]
    S. Schochet — “The mathematical theory of low mach numbers flows”, in special issue vol. 39 No. 3 (May–June 2005), M2AN Math. Model. Numer. Anal., 2005.Google Scholar
  34. [34]
    T.C. Sideris, B. Thomases & D. Wang — “Long time behavior of solutions to the 3D compressible Euler equations with damping”, Comm. Partial Differential Equations 28 (2003), no. 3–4, p. 795–816.CrossRefMathSciNetMATHGoogle Scholar
  35. [35]
    W.-A. Yong — “Entropy and global existence for hyperbolic balance laws”, Arch. Ration. Mech. Anal. 172 (2004), no. 2, p. 247–266.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Thomas Alazard
    • 1
  1. 1.MAB Université de Bordeaux ITalence CedexFrance

Personalised recommendations