Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 670 Accesses

Abstract

Over the past 20 years, biotechnology has pioneered the development of genetically engineered therapies that target specific aspects of the immune response. However, biologic agents are frequently immunogenic, requiring complex and labor intensive production processes and parenteral administration, resulting in high costs which limit both availability and access to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Firestein GS, Manning M (1999) Signal transduction and transcription factors in rheumatic diseases. Arthritis Rheum 42: 609–621

    Article  CAS  PubMed  Google Scholar 

  2. Piecyk M, Anderson P (2001) Signal transduction in rheumatoid arthritis. Best Practice and research. Clin Rheumatol 15: 789–803

    CAS  Google Scholar 

  3. Handel ML, Gurgis L (2001) Transcription factors. Best Practice and Research. Clin Rheumatol 15: 657–675

    CAS  Google Scholar 

  4. Angel P, Karin M (1991) The role of Jun, Fas and the AP-1 complex in cell proliferation and transformation. Biochem Biophys Acta 1072: 129–157

    CAS  PubMed  Google Scholar 

  5. Kinne RW, Boehim S, Iftner T et al (1995) Synovial fibroblast-like cells strongly express jun-B and c-fas proto-oncogenes in rheumatoid and osteoarthritis. Scand J Rheumatol 101: Suppl 121–125

    Article  CAS  Google Scholar 

  6. Deleuran BW, Chu GQ, Field M Brennan FM, Mitchell T, Feldmann M, Maini RN (1992) Localization of tumor necrosis factor receptors in the synovial tissue and cartilage pannus junction in patients with rheumatoid arthritis: implications for local actions of tumor necrosis factor α. Arthritis Rheum 35: 1170–1178

    Article  CAS  PubMed  Google Scholar 

  7. Han Z, Boyle DL, Manning A et al (1998) AP-1 and NFKB regulation in rheumatoid arthritis and murine collagen-induced arthritis. Autoimmunity 28: 197–208

    Article  CAS  PubMed  Google Scholar 

  8. Schett G, Tohidast-Akrad M, Smolen JS, Steiner CW, Bitzan P, Zenz P, Redlich K, Xu Q, Steiner G (2000) Activation, differential localization and regulation of the stress activated protein kinases, extracellular signal regulated kinase, C-Jun N-terminal kinase and p38 mitogen activated protein kinase in synovial tissue and cells in rheumatoid arthritis. Arthritis Rheum 43: 2501–2502

    Article  CAS  PubMed  Google Scholar 

  9. Han Z, Boyle DL, Chang L, Bennett B, Karin M, Yang L, Manning AM, Firestein GS (2001) c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. J. Clin Invest 108: 73–81

    CAS  PubMed  Google Scholar 

  10. Han Z, Chang L, Yamanishi Y (2002) Joint damage and inflammation in c-Jun N-terminai kinase Z knockout mice with passive murine collagen-induced arthritis. Arthritis Rheum 46: 818–823

    Article  CAS  PubMed  Google Scholar 

  11. Herlaar E, Brown Z (1999) p38 MAPK signalling cascades in inflammatory disease. Mol Med Today 5: 439-447

    Google Scholar 

  12. Shiojawa S, Shimizu K, Tanaka K et al (1997) Studies on the contribution of c-fos/AP-1 to arthritic joint destruction. J. Clin Invest 99: 1210–1216

    Article  Google Scholar 

  13. Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL (2000) Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacol 47: 185–201

    Article  CAS  Google Scholar 

  14. Adams JL, Badger AM, Kumar S, Lee JC (2001) p38 MAP kinase: Molecular target for the inhibition of pro-inflammatory cytokines. Prog Med Chem 38: 1–60

    Article  CAS  PubMed  Google Scholar 

  15. Handel ML, McMorrow LB, Gravellese EM (1995) Nuclear factor KB in rheumatoid synovium: localization of p50 and p65. Arthritis Rheum 38: 1762–1770

    Article  CAS  PubMed  Google Scholar 

  16. Roshak AK, Callahan JF, Blake SM et al (2002) Small molecule inhibitors of NFKB for the treatment of inflammatory joint disease. Curr Opinion in Pharmacol 2: 316–321

    Article  CAS  Google Scholar 

  17. Aupperle KB, Bennet BL, Boyle DL et al (1999) NFKB regulation by I kappa B kinase in primary fibroblast-like synoviocytes. J. Immunol 163: 427

    CAS  PubMed  Google Scholar 

  18. Tak PP, Gerlag DM, Aupperle KG et al (2001 ) Inhibitor of nuclear factor kappa B kinase beta is a key regulator of synovial inflammation. Arthritis Rheum 44: 1897–1907

    Article  CAS  PubMed  Google Scholar 

  19. Miagkov AV, Kovalenko DV, Brown CE (1998) NF kappab activation provides the potential link between inflammation and hyperplasia in the arthritis joint. Proc Natl Head Sei USA 95: 13859–13864

    Article  CAS  Google Scholar 

  20. Tomita T, Takeuchi E, Tomita N, Morishita R, Kaneko M, Yamamoto K, Nakase T, Seki H, Kato K, Kaneda Y et al (1999) Suppressed severity of collagen induced arthritis by in vivo transfection of nuclear factor kappa B decoy oligodeoxyonucleotides as a gene therapy. Arthritis Rheum 42: 2532–1242

    Article  CAS  PubMed  Google Scholar 

  21. Yokota A, Narazaki M, Shima Y, Murata N, Tanaka T, Suemura M, Yoshizaki K, Fujiwara H, Tsuyuguchi I, Kishimoto T (2001) Preferential and persistent activation of the STAT1 pathway in rheumatoid synovial cells. J. Rheum 28: 1952–1959

    CAS  PubMed  Google Scholar 

  22. Crooke ST (1999) Molecular mechanisms of antisense drugs: human RnaseH. Antisense Nucleic Acid Drug Dev 9: 377

    CAS  Google Scholar 

  23. Moss ML, White JM, Andrews RC (2001) TACE and other ADAM proteases as targets for drugs discovery. Drug Discov Today 6(8): 417–426

    Article  CAS  PubMed  Google Scholar 

  24. Randle JC, Harding MW, Ku G et al (2001) ICE/Caspase-1 inhibitors as novel antiinflammatory drugs. Expert Opin Investig Drugs 10 (7): 1207–1209

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Keystone, E.C., Haraoui, B. (2005). Future molecular targets. In: Day, R.O., Fürst, D.E., van Riel, P.L.C.M., Bresnihan, B. (eds) Antirheumatic Therapy: Actions and Outcomes. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7726-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7643-7726-7_4

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-7643-6595-0

  • Online ISBN: 978-3-7643-7726-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics