Medicinal chemistry of the disease modifying anti-rheumatic drugs

  • Garry G. Graham
Part of the Progress in Inflammation Research book series (PIR)


The disease modifying anti-rheumatic drugs (DMARD) and the corticosteroids constitute a great variety of chemical compounds and, as is the case with all drugs, the chemical properties of the DMARD and corticosteroids are important aspects of their pharmacology. In this chapter, the medicinal chemistry of the various DMARD is discussed. The coverage includes the chemical factors that affect their handling by the body. In addition to the DMARD discussed in this book, the chemistry of penicillamine is also described. Although the use of penicillamine as an anti-rheumatic drug has declined in recent years, thiol compounds, such as penicillamine, are still of great interest because of their antioxidant activity and potential activities in inflammatory states.


Antirheumatic Drug Triamcinolone Acetonide Chiral Centre Thiol Compound Gold Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Warhurst DC, Steele JCP, Adagu IS, Craig JC, Cullander C (2003) Hydroxychloroquine is much less active than chloroquine against chloroquine-resistant Plasmodium falciparum, in agreement with its physicochemical properties. J Antimicrob Chemother 52: 188–193CrossRefPubMedGoogle Scholar
  2. 2.
    Drayton CJ (1990) Comprehensive medicinal chemistry, Volume 6. Pergamon Press, OxfordGoogle Scholar
  3. 3.
    Thummel KE, Shen DD (1996) Dosage and optimization of dosage regimens; Pharmacokinetic data. In: JG Hardman, LE Limbird (eds): The Pharmacological Basis of Therapeutics, Edition 10. McGraw-Hill, New York 1917–2023Google Scholar
  4. 4.
    Cutler DJ, Maclntyre AC, Tett SE (1988) Pharmacokinetics and cellular uptake of 4-aminoquinolone antimalarials. Agents Actions (Suppl) 24: 142–157Google Scholar
  5. 5.
    Krogstad DJ, Schlesinger PH (1986) A perspective on antimalarial action: effects of weak bases on Plasmodium falciparum. Biochem Pharmacol 35: 547–552CrossRefPubMedGoogle Scholar
  6. 6.
    Fürst DE, Lindsley H, Baethge B, Botstein GR, Caldwell J, Dietz F, Ettlinger R, Golden HE, McLaughlin GE, Moreland LW et al (1999) Dose-loading with hydroxychloroquine improves the rate of response in early, active rheumatoid arthritis: a randomized, double-blind six-week trial with eighteen-week extension. Arthritis Rheum 42: 357–365CrossRefPubMedGoogle Scholar
  7. 7.
    McLachlan AJ, Tett SE, Cutler DJ, Day RO (1993) Disposition of the enantiomers of hydroxychloroquine in patients with rheumatoid arthritis following multiple doses of the racemate. Br J Clin Pharmacol 36: 78–81PubMedGoogle Scholar
  8. 8.
    McLachlan AJ, Cutler DJ, Tett SE (1993) Plasma protein binding of the enantiomers of hydroxyquinoline and metabolites. Eur J Clin Pharmacol 44: 481–484CrossRefPubMedGoogle Scholar
  9. 9.
    Elion GB (1989) The purine path to chemotherapy. Science 244: 41–47CrossRefPubMedGoogle Scholar
  10. 10.
    Weinshilboum R (2001) Thiopurine pharmacognetics: clinical and molecular studies of thiopurine methylpurine transferase. Drug Metab Disp 29: 601–605Google Scholar
  11. 11.
    Marra CA, Esdaile JM, Anis AH (2002) Practical pharmacogenetics: the cost effectiveness of screening for thiopurine S-transmethylase (TPMT) polymorphisms in patients with rheumatological conditions treated with azathioprine. J Rheumatol 29: 2507–2512PubMedGoogle Scholar
  12. 12.
    Seidman EG, Fürst DE (2002) Pharmacogenetics for the individualization of treatment of rheumatological disorders using azathioprine. J Rheumatol 29: 2507–2512Google Scholar
  13. 13.
    Dubinsky MC, Lamothe S, Yang HY et al (2000) Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 118: 705–713CrossRefPubMedGoogle Scholar
  14. 14.
    Yocum DE, Fürst DE, Kaine JL, Baldassare AR, Stevenson JT, Borton MA, Mengle-Gaw LJ, Schwatz BD, Wisemandle W, Mekki OA et al (2003) Efficacy and safety of tacrolimus in patients with rheumatoid arthritis: a double blind trial. Arthritis Rheum 48: 3328–3337CrossRefPubMedGoogle Scholar
  15. 15.
    Huai Q, Kim H-Y, Liu Y, Zhao Y, Mondragon A, Liu JO, Ke H (2002) Crystal structure of calcineurin-cyclophilin-cyclosporin shows common but distinct recognition of immunophilin-drug complexes. Proc Nat Acad Sci USA 99: 12037–12042CrossRefPubMedGoogle Scholar
  16. 16.
    Kean WF, Lock CJL, Howard-Lock HE (1991) Chirality in antirheumatic drugs. Lancet 338: 1565–1568CrossRefPubMedGoogle Scholar
  17. 17.
    Gerber RC, Paulus HE, Bluestone R, Lederer M (1972) Kinetics of aurothiomalate in serum and synovial fluid Arthritis Rheum 15: 625–629CrossRefPubMedGoogle Scholar
  18. 18.
    Ghadially FN (1979) Ultrastructural localization and in situ analysis of iron, bismuth and gold inclusions. CRC Crit Rev Toxicol 6: 303–350CrossRefPubMedGoogle Scholar
  19. 19.
    Graham GG, Champion GD, Ziegler JB (1994) The cellular metabolism and effects of gold complexes. Metal Based Drugs 1: 395–404CrossRefPubMedGoogle Scholar
  20. 20.
    Shaw CF (1999) The biochemistry of gold. In: H Schmidbaur (ed): Gold: Progress in Chemistry, Biochemistry and Technology. John Wiley, New York 259–308Google Scholar
  21. 21.
    Crooke ST, Snyder RM, Butt TR, Ecker DJ, Allaudeen HS, Monia B, Mirabelli CK (1986) Cellular and molecular pharmacology of auranofin and related gold complexes. Biochem Pharmacol 35: 3423–3431CrossRefPubMedGoogle Scholar
  22. 22.
    Canumalla AJ, Al-Zamil N, Phillips M, Isab AA, Shaw CF (2001) Redox and ligand exchange reactions of potential gold(I) and gold(III)-cyanide metabolites under biomimetic conditions. J Inorg Biochem 85: 67–76CrossRefPubMedGoogle Scholar
  23. 23.
    Rozman B (2002) Clinical pharmacokinetics of leflunomide. Clin Pharmacokinet 41: 421–430CrossRefPubMedGoogle Scholar
  24. 24.
    Kim HA, Song Y (1997) A comparison between bucillamine and D-penicillamine in the treatment of rheumatoid arthritis. Rheumatol Int 17: 5–9CrossRefPubMedGoogle Scholar
  25. 25.
    Jaffe IA (1980) Thiol compounds with penicillamine-like activity and possible mode of action in rheumatoid arthritis. Clin Rheum Dis 6 (3), 633–645Google Scholar
  26. 26.
    Bird HA, Le Gallez P, Dixon JS, Catalano MA, Traficante A, Liauw LA, Sussman H, Rotman H, Wright V (1990) A clinical and biochemical assessment of a nonthiol ACE inhibitor (pentopril; CGS-13945) in active rheumatoid arthritis. J Rheumatol 17: 603–608PubMedGoogle Scholar
  27. 27.
    Jonsson H, Wollheim FA, Svensson B (1986) No effect of acetylcystein on refractory arthritis. Clin Exp Rheumatol 4: 363–364PubMedGoogle Scholar
  28. 28.
    Kroger H, Miesel R, Dietrich A, Ohde M, Altrichter S, Braun C, Ockenfels H (1997) Suppression of type II collagen-induced arthritis by N-acetyl-L-cysteine in mice. Gen Pharmacol 29: 671–674CrossRefPubMedGoogle Scholar
  29. 29.
    Harbar JA, Cusworth DC, Lawes LC, Wrong OM (1986) Comparison of 2-mercaptopropionylglycine and D-penicillamine in the treatment of cystinuria. J Urol 136: 146–149PubMedGoogle Scholar
  30. 30.
    Munday R (1989) Toxicity of thiols and disulphides: involvement of free-radical species. Free Rad Biol Med 7: 659–673CrossRefPubMedGoogle Scholar
  31. 31.
    Svartz N (1942) Salazopyrin, a new sulfanilamide preparation: a. therapeutic results in rheumatic polyarthritis; b. therapeutic results in ulcerative colitis; c. toxic manifestations in treatment with sulfanilamide preparations. Acta Med Scand 110: 577–598Google Scholar
  32. 32.
    Bondesen S, Nielsen OH, Schou JB, Jensen PH, Lassen LB, Binder V, Krasilnikoff PA, Dano P, Hansen SH, Jacobsen O et al (1986) Steady-state kinetics of 5-aminosalicylic acid and sulphapyridine during sulfasalazine prophylaxis in ulcerative colitis. Scand J Gastroenterol 21: 693–700CrossRefPubMedGoogle Scholar
  33. 33.
    Taggart AJ, McDermott BJ, Roberts SD (1992) The effect of age and acetylator phenotype on the pharmacokinetics of sulfasalazine in patients with rheumatoid arthritis. Clin Pharmacokin 23: 311–320CrossRefGoogle Scholar
  34. 34.
    Pullar T, Hunter JA, Capell HA (1985) Which component of sulphasalazine is active in rheumatoid arthritis. Br Med J 290: 1535–1538CrossRefGoogle Scholar
  35. 35.
    Astbury C, Hill J, Bird HA (1988) Co-trimoxazole in rheumatoid arthritis: a comparison with sulphapyridine. Ann Rheum Dis 47: 323–327CrossRefPubMedGoogle Scholar
  36. 36.
    Chapman CM, Zwillich SH (1994) Olsalazine in ankylosing spondylitis: a pilot study. J Rheumatol 21: 1699–1701PubMedGoogle Scholar
  37. 37.
    Gringauz A (1997) Medicinal Chemistry. Wiley-VCH, New YorkGoogle Scholar
  38. 38.
    Saivin S, Houin G (1988) Clinical pharmacokinetics of doxycycline and minocycline. Clin Pharmacokin 15: 355–366CrossRefGoogle Scholar
  39. 39.
    Endou H (2002) Human anion transporters mediate the transport of teracycline. Jap J Pharmacol 88: 69–76CrossRefPubMedGoogle Scholar
  40. 40.
    Leydon JJ (1985) Absorption of minocycline hydrochloride and tetracycline. Effect of food, milk, and iron. J Am Acad Dermatol 12: 308–312CrossRefGoogle Scholar
  41. 41.
    Zeelen FJ (1990) Medicinal chemistry of steroids. Elsevier, AmsterdamGoogle Scholar
  42. 42.
    Toutain PL, Alvinerie M, Fayolle P, Ruckebusch Y (1986) Bovine plasma and synovial fluid kinetics of methylprednisolone and methylprednisolone acetate after intraarticular administration of methylprednisolone acetate. J Pharmacol Exp Ther 236: 794–802PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2005

Authors and Affiliations

  • Garry G. Graham
    • 1
    • 2
  1. 1.Department of Physiology and Pharmacology, School of Medical SciencesUniversity of New South WalesSydneyAustralia
  2. 2.Department of Clinical PharmacologySt Vincent’s HospitalSydneyAustralia

Personalised recommendations