Advertisement

The pathophysiology of psoriasis

  • Marissa D. Newman
  • Jeffrey M. Weinberg
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

The past 25 years of research and clinical practice have revolutionized our understanding of the pathogenesis of psoriasis as the dysregulation of immunity triggered by environmental and genetic stimuli. Psoriasis was originally regarded as a primary disorder of epidermal hyperproliferation. However, experimental models and clinical results from immunomodulating therapies have refined this perspective in conceptualizing psoriasis as a genetically programmed pathologic interaction between resident skin cells, infiltrating immunocytes and a host of proinflammatory cytokines, chemokines and growth factors produced by these immunocytes. Two populations of immunocytes and their respective signaling molecules collaborate in the pathogenesis: innate immunocytes, mediated by antigen presenting cells (including natural killer T lymphocytes, Langerhans cells and neutrophils) and acquired or adaptive immunocytes, mediated by mature CD4+ and CD8+ T lymphocytes in the skin. Such dysregulation of immunity and subsequent inflammation is responsible for the development and perpetuation of the clinical plaques and histological inflammatory infiltrate characteristic of psoriasis.

Keywords

Natural Killer Psoriatic Skin Immunologic Synapse Psoriatic Lesion Chronic Plaque Psoriasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gottlieb A (1998) Psoriasis. Disease Management and Clinical Outcomes 1: 195–202CrossRefGoogle Scholar
  2. 2.
    Gaspari A (2005) Innate and adaptive immunity and the pathophysiology of psoriasis. J Am Acad Dermatol 54: S67–S80CrossRefGoogle Scholar
  3. 3.
    Barker J (1991) The pathophysiology of psoriasis. Lancet 338: 227–230PubMedCrossRefGoogle Scholar
  4. 4.
    Nickoloff B, Nestle F (2004) Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. Sci Med 113: 1664–1675Google Scholar
  5. 5.
    Bos J, Meinardi M, van Joost T, Huele F, Powles A, Fry L (1989) Use of cyclosporine in psoriasis. Lancet 23: 1500–1505CrossRefGoogle Scholar
  6. 6.
    Khandke L, Krane J, Ashinoff R, Staiano-Coico L, Granelli-Piperno A, Luster A, Carter D, Krueger J, Gottlieb A (1991) Cyclosporine in psoriasis treatment: Inhibition of keratinocyte cell-cycle progression in G1 independent effects on transforming growth factor-alpha/epidermal growth factor receptor pathways. Arch Dermatol 127: 1172–1179PubMedCrossRefGoogle Scholar
  7. 7.
    Gottlieb S, Gilleaudeau P, Johnson R, Estes L, Woodworth T, Gottlieb A, Krueger J (1995) Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nature Med 1: 442–447PubMedCrossRefGoogle Scholar
  8. 8.
    Vallat V, Gilleaudeau P, Battat L, Wolfe J, Nabeya R, Heftler N, Hodak E, Gottlieb A, Krueger J (1994) PUVA bath therapy strongly suppresses immunological and epidermal activation in psoriasis: a possible cellular basis for remittive therapy. J Exp Med 180: 283–296PubMedCrossRefGoogle Scholar
  9. 9.
    Gottlieb A, Grossman R, Khandke L, Carter DM, Sehgal P, Fu S, Granelli-Piperno A, Rivas M, Barazani L, Krueger J (1992) Studies of the effect of cyclosporine in psoriasis in vivo: Combined effects on activated T lymphocytes and epidermal regenerative maturation. J Invest Dermatol 98: 302–309PubMedCrossRefGoogle Scholar
  10. 10.
    Gottlieb S, Hayes E, Gilleaudeau P, Cardinale I, Gottlieb A, Krueger J (1996) Cellular actions of etretinate in psoriasis: Enhanced epidermal differentiation and reduced cell-mediated inflammation are unexpected outcomes. J Cutaneous Pathol 23: 404–418CrossRefGoogle Scholar
  11. 11.
    Nickoloff B, Bonish B, Huang B, Porcelli S (2000) Characterization of a T cell line bearing natural killer receptors and capable of creating psoriasis in a SCID mouse model system. J Dermatol Sci 24: 212–225PubMedCrossRefGoogle Scholar
  12. 12.
    Gillet M, Conrad C, Geiges M, Cozzio A, Thurlimann W, Burg G (2004) Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol 140: 1490–1495CrossRefGoogle Scholar
  13. 13.
    Funk J, Langeland T, Schrumpf E, Hansen L (1991) Psoriasis induced by interferon-alpha. Br J Dermatol 125: 463–465PubMedCrossRefGoogle Scholar
  14. 14.
    Shiohara T, Kobayahsi M, Abe K, Nagashima M (1988) Psoriasis occurring predominantly on warts: possible involvement of interferon alpha. Arch Dermatol 124: 1816–1821PubMedCrossRefGoogle Scholar
  15. 15.
    Fierlbeck G, Rassner G, Muller C (1990) Psoriasis induced at the injection site of recombinant interferon gamma: results of immunohistologic investigations. Arch Dermatol 126: 351–355PubMedCrossRefGoogle Scholar
  16. 16.
    Prinz J (2003) The role of T cells in psoriasis. J Eur Acad Dermatol Venereol 17(Suppl): 1–5Google Scholar
  17. 17.
    Bos J, de Rie M (1999) The pathogenesis of psoriasis: immunological facts and speculations. Immunology Today 20: 40–46PubMedCrossRefGoogle Scholar
  18. 18.
    Geginat J, Campagnaro S, Sallusto F, Lanzavecchia A (2002) TCR-independent proliferation and differentiation of human CD4+ T cell subsets induced by cytokines. Adv Exp Med Bio 512: 107–112Google Scholar
  19. 19.
    Kastelan M, Massari L, Brajac I (2006) Apoptosis mediated by cytolytic molecules might be responsible for maintenance of psoriatic plaques. Med Hypotheses 67: 336–337PubMedCrossRefGoogle Scholar
  20. 20.
    Austin L, Ozawa M, Kikuchi T, Walters I, Krueger J (1999) The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J Invest Dermatol 113: 752–759PubMedCrossRefGoogle Scholar
  21. 21.
    Abrams J, Kelley S, Hayes E, Kikuchi T, Brown M, Kang S, Lebwohl M, Guzzo C, Jegasothy B, Linsley P et al. (2000) Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plagues, including the activation of keratinocytes, dendritic cells and endothelial cells. J Exp Med 192: 681–694PubMedCrossRefGoogle Scholar
  22. 22.
    Lebwohl M, Christophers E, Langley R, Ortonne J, Roberts J, Griffiths C (2003) An international, randomized, double-blind, placebo-controlled phase 3 trial of intramuscular alefacept in patients with chronic plaque psoriasis. Arch Dermatol 139: 719–727PubMedCrossRefGoogle Scholar
  23. 23.
    Krueger G, Ellis C (2003) Alefacept therapy produces remission for patients with chronic plaque psoriasis. Br J Dermatol 148: 784–788PubMedCrossRefGoogle Scholar
  24. 24.
    Gordon K, Leonardi C, Tyring S, Gottlieb A, Walicke P, Dummer W, Papp K (2002) Efalizumab (anti-CD11a) is safe and effective in the treatment of psoriasis: Pooled results of the 12-week first treatment period from 2 phase III trials. J Invest Dermatol 119: 242Google Scholar
  25. 25.
    Singh A, Wilson M, Hong S, Olivares-Villagomez D, Du C, Stanic A, Joyce S, Sriram S, Koezuka Y, Van Kaer L (2001) Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 194: 1801–1811PubMedCrossRefGoogle Scholar
  26. 26.
    Saubermann L, Beck P, De Jong Y, Pitman R, Ryan M, Kim H, Exley M, Snapper S, Balk S, Hagen S et al. (2000) Activation of natural killer T cells by alpha-glactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology 119: 119–128PubMedCrossRefGoogle Scholar
  27. 27.
    Campos R, Szczepanik M, Itakura A, Akahira-Azuma M, Sidobre S, Kronenberg M, Askenase P (2003) Cutaneous immunization rapidly activates liver invariant Valpha 14 NKT cells stimulating B-1 B cells to initiate T cell recruitment for elicitation of contact sensitivity. J Exp Med 198: 1785–1796PubMedCrossRefGoogle Scholar
  28. 28.
    Bonish B, Jullien D, Dutronc Y, Huang B, Modlin R, Spada F, Porcelli S, Nickoloff B (2000) Overexpression of CD1d by keratinocytes in psoriasis and CD1d-dependent IFN-gamma production by NK-T cells. J Immunol 165: 4076–4085PubMedGoogle Scholar
  29. 29.
    Deguchi M, Aiba S, Ohtani H, Nagura H, Tagami H (2002) Comparison of the distribution and numbers of antigen-presenting cells among T-lymphocyte-mediated dermatoses: CD1a+, factor XIIIa+, and CD68+ cells in eczematous dermatitis, psoriasis, lichen planus and graft-versus-host disease. Arch Dermatol Res 294: 297–302PubMedGoogle Scholar
  30. 30.
    Bos J, de Rie M, Teunissen M, Piskin G (2005) Psoriasis: dysregulation of innate immunity. Br J Dermatol 152: 1098–1107PubMedCrossRefGoogle Scholar
  31. 31.
    Trefzer U, Hofmann M, Sterry W, Asadullah K (2003) Cytokine and anticytokine therapy in dermatology. Expert Opin Biol Ther 3: 733–743PubMedCrossRefGoogle Scholar
  32. 32.
    Nickoloff B (1991) The cytokine network in psoriasis. Arch Dermatol 127: 871–884PubMedCrossRefGoogle Scholar
  33. 33.
    Gaspari A (2006) Innate and adaptive immunity and the pathophysiology of psoriasis. J Am Acad Dermatol 54(Suppl 2): S67–S80PubMedCrossRefGoogle Scholar
  34. 34.
    Victor F, Gottlieb A (2002) TNF-alpha and apoptosis: implications for the pathogenesis and treatment of psoriasis. J Drugs Dermatol 3: 264–275Google Scholar
  35. 35.
    Oh C, Das K, Gottlieb A (2000) Treatment with anti-tumour necrosis factor alpha (TNF-alpha) monoclonal antibody dramatically decreases the clinical activity of psoriasis lesions. J Am Acad Dermatol 42: 829–830PubMedCrossRefGoogle Scholar
  36. 36.
    Reich K, Nestle FO, Papp K, Ortonne J, Evans R, Guzzo C, Li S, Dooley L, Griffiths C; EXPRESS study investigators (2005) Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet 366: 1367–1374PubMedCrossRefGoogle Scholar
  37. 37.
    Leonardi C, Powers J, Matheson R, Goffe B, Zitnick R, Wang A, Gottlieb A (2003) Etanercept as monotherapy in patients with psoriasis. N Engl J Med 349: 2014–2022PubMedCrossRefGoogle Scholar
  38. 38.
    Saini R, Tutrone W, Weinberg J (2005) Advances in therapy for psoriasis: an overview of infliximab, etanercept, efalizumab, alefacept, adalimumab, tazarotene, and pimecrolimus. Curr Pharm Des 11: 273–280PubMedCrossRefGoogle Scholar
  39. 39.
    Rahman P, Elder J (2005) Genetic epidemiology of psoriasis and psoriatic arthritis. Ann Rheum Dis 64(Suppl II): ii37–ii39PubMedCrossRefGoogle Scholar
  40. 40.
    Elder J (2006) PSORS1: Linking genetics and immunology. J Invest Dermatol 126: 1205–1206PubMedCrossRefGoogle Scholar
  41. 41.
    Krueger J, Bowcock A (2005) Psoriasis pathophysiology: current concepts of pathogenesis. Ann Rheum Dis 64(Supp ll):ii30–ii36PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Marissa D. Newman
    • 1
  • Jeffrey M. Weinberg
    • 2
  1. 1.UMDNJ-Robert Wood Johnson Medical School New JerseyUSA
  2. 2.Department of DermatologySt. Luke’s-Roosevelt Hospital Center and Beth Israel Medical CenterNew YorkUSA

Personalised recommendations