Skip to main content

Shape Optimization for Navier-Stokes Equations

  • Conference paper
  • First Online:
Control of Coupled Partial Differential Equations

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 155))

Abstract

The minimization of drag functional for the stationary, isothermal, compressible Navier-Stokes equations (N-S-E) in three spatial dimensions is considered. In order to establish the existence of an optimal shape the general result [26] on compactness of families of generalized solutions to N-S-E is applied. The family of generalized solutions to N-S-E is constructed over a family of admissible domains \( \mathcal{U}_{ad} \). Any admissible domain Ω = B\S contains an obstacle S, e.g., a wing profile. Compactness properties of the family of admissible domains are imposed. It turns out that we require the compactness of the family of admissible domains with respect to the Hausdorff metrics as well as in the sense of Kuratowski-Mosco. The analysis is performed for the range of adiabatic ratio γ > 1 in the pressure law p(ρ) = gr γ and it is based on the technique proposed in [24] for the discretized N-S-E.

This work was completed during a stay of the first author at the Institute Elie Cartan of the University Henri Poincaré Nancy I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. AdamsOn the existence of capacitary strong type estimates in R n Arkiv for Matematik 14, (1976) 125–140.

    Article  MathSciNet  Google Scholar 

  2. D. Adams and L. HedbergFunction Spaces and Potential Theory Springer-Verlag, Berlin etc 1995).

    MATH  Google Scholar 

  3. J.M. Ball A version of the fundamental theorem for Young measures In: PDEs and. continuum Models of Phase Trans., Lecture Notes in Physics, 344(1989) 241–259.

    MathSciNet  Google Scholar 

  4. R.J. DiPerna, P.L. LionsOrdinary differential equations, transport theory and Sobolev spaces Invent. Math. 48,(1989) 511–547.

    Article  MathSciNet  Google Scholar 

  5. Edwards R.E.Functional analysis. Theory and applications (Holt, Rinehart and Wilson, N.Y.-Toronto-London, 1965)

    MATH  Google Scholar 

  6. E. FeireislOn compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable Comment. Math. Univ. Carolina 42,(2001) 83–98.

    MathSciNet  MATH  Google Scholar 

  7. E. Feireisl, Š. Matušů-Nečasová, H. Petzeltováa, I. StraškrabaOn the motion of a viscous compressible fluid driven by a time-periodic external force Arch. Rational Mech. Anal. 149, (1999) 69–96.

    Article  MathSciNet  Google Scholar 

  8. E. Feireisl, A.H. Novotný, H. PetzeltováOn the existence of globally defined weak solutions to the Navier-Stokes equations J. of Math. Fluid Mech. 3, (2001), 358–392.

    Article  MathSciNet  Google Scholar 

  9. E. Feireisl, A.H. Novotný, H. PetzeltováOn the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid Math.Methods Appl. Sci. 25 (2002), no. 12, 1045–1073.

    Article  MathSciNet  Google Scholar 

  10. E. FeireislShape optimisation in viscous compressible fluids Appl. Math. Optim. 47(2003), 59–78.

    Article  MathSciNet  Google Scholar 

  11. E. FeireislDynamics of Viscous Compressible Fluids (Oxford University Press, Oxford 2004).

    MATH  Google Scholar 

  12. L. HedbergSpectral synthesis in Sobolev spaces, and uniqueness of solutions of the Dirichlet problem. Acta Math. 147 (1981), no. 3–4, 237–264.

    Article  MathSciNet  Google Scholar 

  13. B. Kawohl, O. Pironneau, L. Tartar and J. ZolesioOptimal Shape Design Lecture Notes in Math. 1740, Springer-Verlag, 2000.

    Google Scholar 

  14. Jae Ryong Kweon, R.B. KelloggRegularity of solutions to the Navier-Stokes system for compressible flows on a polygon. SIAM J. Math. Anal. 35 (2004), no. 6, 1451–1485

    Article  MathSciNet  Google Scholar 

  15. Jae Ryong Kweon, R.B. KelloggRegularity of solutions to the Navier-Stokes equations for compressible barotropic flows on a polygon. Arch. Ration. Mech. Anal. 163 (2002), no. 1, 35–64.

    Article  MathSciNet  Google Scholar 

  16. Jae Ryong Kweon, R.B. KelloggCompressible Stokes problem on nonconvex polygonal domains. J. Differential Equations 176 (2001), no. 1, 290–314.

    Article  MathSciNet  Google Scholar 

  17. P.L. LionsMathematical topics in fluid dynamics, Vol. 2, Compressible models (Oxford Science Publication, Oxford 1998).

    MATH  Google Scholar 

  18. P.L. LionsOn some challenging problems in nonlinear partial differential equations in V. Arnold (ed.) et al., Mathematics: Frontiers and perspectives (American Mathematical Society, Providence 2000) 121–135.

    Google Scholar 

  19. J. Malek, J. Necas, M. Rokyta, M. RuzickaWeak and measure-valued solutions to evolutionary PDE (Chapman and Hall, London 1996).

    Book  Google Scholar 

  20. A. Novotný, M. PadulaExistence and Uniqueness of Stationary solutions for viscous compressible heat conductive fluid with large potential and small non-potential external forces Siberian Math. Journal, 34, 1993, 120–146

    Article  MathSciNet  Google Scholar 

  21. A. Novotný, I. StraškrabaIntroduction to the mathematical theory of compressible flow Oxford Lecture Series in Mathematics and its Applications, Vol. 27. Oxford University Press, Oxford, 2004.

    Google Scholar 

  22. P. PedregalParametrized measures and variational principles Progress in Nonlinear Differential Equations and their Applications, 30 Birkhäuser Verlag, Basel, 1997.

    Google Scholar 

  23. P.I. Plotnikov, J. SokolowskiOn compactness, domain dependence and existence of steady state solutions to compressible isothermal Navier-Stokes equations Journal of Mathematical Fluid Mechanics (electronic).

    Google Scholar 

  24. P.I. Plotnikov, J. SokolowskiConcentrations of solutions to time-discretized compressible Navier-Stokes equations Communications in Mathematical Physics (electronic).

    Google Scholar 

  25. P.I. Plotnikov, J. SokolowskiStationary Boundary Value Problems for Navier-Stokes Equations with Adiabatic Index ν < 3/2. Doklady Mathematics. Vol. 70, No. 1, 2004, 535–538, Translated from Doklady Akademii Nauk, Volume 397, N.0, 1–6, 2004.

    Google Scholar 

  26. P.I. Plotnikov, J. SokolowskiDomain dependence of solutions to compressible Navier-Stokes equations to appear.

    Google Scholar 

  27. P.I. Plotnikov, J. SokolowskiShape sensitivity analysis for compressible Navier-Stokes equations in preparation.

    Google Scholar 

  28. K. YoshidaFunctional Analysis and Its Applications New York: Springer-Verlag, 1971.

    Google Scholar 

  29. W.P. ZiemerWeakly differentiable functions (Springer-Verlag, New York etc. 1989)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Plotnikov, P.I., Sokolowski, J. (2007). Shape Optimization for Navier-Stokes Equations. In: Kunisch, K., Sprekels, J., Leugering, G., Tröltzsch, F. (eds) Control of Coupled Partial Differential Equations. International Series of Numerical Mathematics, vol 155. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-7721-2_11

Download citation

Publish with us

Policies and ethics