Skip to main content

The ∞-Laplacian First Eigenvalue Problem

  • Conference paper
  • First Online:
Free Boundary Problems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 154))

  • 1581 Accesses

Abstract

We review some results about the first eigenvalue of the infinity Laplacian operator and its first eigenfunctions in a general norm context. Those results are obtained in collaboration with several authors: V. Ferone, P. Juutinen and B. Kawohl (see [BFK], [BK1], [BJK] and [BK2]). In Section 5 we make some remarks on the simplicity of the first eigenvalue of Δ: this will be the object of a joint work with A. Wagner (see [BW]).

This work was completed with the support of the research project Calcolo delle Variazioni e Teoria Geometrica della Misura.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Aronsson: Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551–561.

    Article  MathSciNet  Google Scholar 

  2. G. Aronsson: On the partial differential equation u x 2u xx+2u xu yu xy+u y 2u yy = 0, Ark. Mat. 7 (1968), 395–425.

    Article  MathSciNet  Google Scholar 

  3. G. Aronsson, M.G. Crandall & P. Juutinen: A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 4, 439–505.

    Article  MathSciNet  Google Scholar 

  4. G. Barles & J. Busca: Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term, Comm. Partial Differential Equations 26 (2001), no. 11–12, 2323–2337.

    Article  MathSciNet  Google Scholar 

  5. E.N. Barron, R. Jensen & C.Y. Wang: The Euler equation and absolute minimizers of L functionals, Arch. Ration. Mech. Anal. 157 (2001), no. 4, 255–283.

    Article  MathSciNet  Google Scholar 

  6. M. Belloni, V. Ferone & B. Kawohl: Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, J. Appl. Math. Phys. (ZAMP), 54 (2003) pp. 771–783.

    Article  MathSciNet  Google Scholar 

  7. M. Belloni, P. Juutinen & B. Kawohl: The p-Laplace eigenvalue problem and viscosity solutions as p → ∞ in a Finsler metric, J. Europ. Math. Soc., to appear.

    Google Scholar 

  8. M. Belloni & B. Kawohl: A direct uniqueness proof for equations involving the p-Laplace operator, Manuscripta Math. 109 (2002), no. 2, 229–231.

    Article  MathSciNet  Google Scholar 

  9. M. Belloni & B. Kawohl: The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞, ESAIM Control Optim. Calc. Var. 10 (2004), no. 1, 28–52.

    Article  MathSciNet  Google Scholar 

  10. M. Belloni, & A. Wagner: manuscript.

    Google Scholar 

  11. T. Bhattacharya, E. DiBenedetto & J. Manfredi: Limits as p → ∞ of Δpu p = f and related extremal problems, Some topics in nonlinear PDEs (Turin, 1989). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue, 15–68 (1991).

    Google Scholar 

  12. G. Buttazzo & L. De Pascale: Optimal Shapes and Masses, and Optimal Transportation Problems, Lecture Notes in Math., 1813, Springer, Berlin (2003), 11–51.

    MATH  Google Scholar 

  13. T. Champion & L. De Pascale: A principle of comparison with distance functions for absolute minimizers, preprint (2004) (see http://cvgmt.sns.it/cgi/get.cgi/papers/chadep04/).

    Google Scholar 

  14. M.G. Crandall; H. Ishii & P.L. Lions: User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1–67.

    Article  MathSciNet  Google Scholar 

  15. M.G. Crandall & L.C. Evans: A remark on infinity harmonic functions, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Via del Mar-Valparaiso, 2000), 123–129 (electronic), Electron. J. Differ. Equ. Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001.

    Google Scholar 

  16. M.G. Crandall, L.C. Evans & R.F. Gariepy: Optimal Lipschitz extensions and the infinity Laplacian., Calc. Var. Partial Differential Equations 13 (2001), no. 2, 123–139.

    Article  MathSciNet  Google Scholar 

  17. G. Dal Maso: An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, MA (1993).

    Google Scholar 

  18. L.C. Evans & W. Gangbo:Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Am. Math. Soc. 653 (1999) pp. 1–66.

    MathSciNet  MATH  Google Scholar 

  19. N. Fukagai, M. Ito & K. Narukawa: Limit as p → ∞ of p-Laplace eigenvalue problems and L -inequality of the Poincaré type, Differential Integral Equations 12 (1999), no. 2, 183–206.

    MathSciNet  MATH  Google Scholar 

  20. A. Garroni, M. Ponsiglione & F. Prinari: From 1-homogeneous supremal functionals to difference quotients: relaxation and Gamma-convergence, Calc. Var. (to appear).

    Google Scholar 

  21. T. Ishibashi & S. Koike: On fully nonlinear pdes derived from variational problems of L p-norms, SIAM J. Math. Anal. 33 (2001) pp. 545–569.

    Article  MathSciNet  Google Scholar 

  22. H. Ishii & P. Loreti: Limits of solutions of p-Laplace equations as p goes to infinity and related variational problems, SIAM J. Math. Anal., to appear (see also http://www.edu.waseda.ac.jp/ishii/).

    Google Scholar 

  23. R. Jensen: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal. 123 (1993), no. 1, 51–74.

    Article  MathSciNet  Google Scholar 

  24. U. Janfalk: Behaviour in the limit, as p → ∞, of minimizers of functionals involving p-Dirichlet integrals, SIAM J. Math. Anal. 27 (1996) pp. 341–360.

    Article  MathSciNet  Google Scholar 

  25. B. Kawohl: A family of torsional creep problems, J. reine angew.Math. 410 (1990) 1–22.

    MathSciNet  MATH  Google Scholar 

  26. B. Kawohl & V. Fridman: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin. 44 (2003), no. 4, 659–667.

    MathSciNet  MATH  Google Scholar 

  27. B. Kawohl & T. Lachand-Robert: Characterization of Cheeger sets for convex subsets of the plane, Pacific J. Math., to appear.

    Google Scholar 

  28. P. Juutinen, P. Lindqvist, J. Manfredi: The ∞-eigenvalue problem, Arch. Ration. Mech. Anal. 148 (1999), no. 2, 89–105.

    Article  MathSciNet  Google Scholar 

  29. P. Juutinen, P. Lindqvist & J. Manfredi: The infinity Laplacian: examples and observations, Papers on analysis, 207–217, Rep. Univ. Jyväskylä Dep. Math. Stat., 83, Univ. Jyväskylä, Jyväskylä, 2001.

    Google Scholar 

  30. P. Lindqvist: On the equation div (|∇u|p−2u)+λ|u|p−2u = 0, Proc. Amer.Math. Soc. 109 (1990), no. 1, 157–164.

    MathSciNet  MATH  Google Scholar 

  31. P. Lindqvist: Addendum: “On the equation div(|∇u|p−2u)+λ|u|p−2u = 0”, Proc. Amer. Math. Soc. 116 (1992), no. 2, 583–584.

    MathSciNet  MATH  Google Scholar 

  32. P. Lindqvist: On a nonlinear eigenvalue problem, Fall School in Analysis (Jyväskylä, 1994), Report, 68, Univ. Jyväskylä, Jyväskylä, (1995) 33–54.

    Google Scholar 

  33. E.J. McShane: On the extension of the range of a function, Bull. Amer. Math. Soc. 40 (1934), 837–842.

    Article  MathSciNet  Google Scholar 

  34. O. Savin: C 1regularity for infinity harmonic functions in two dimensions, preprint (2004).

    Google Scholar 

  35. H. Whitney: Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), no. 1, 63–89.

    Article  MathSciNet  Google Scholar 

  36. Y. Wu: Absolute minimizers in Finsler metric, PhD Thesis (1995), Berkeley.

    Google Scholar 

  37. E. Zeidler: Nonlinear Functional Analysis and Applications III, Variational Methods and Optimization, Springer Verlag, Heidelberg (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Belloni, M. (2006). The ∞-Laplacian First Eigenvalue Problem. In: Figueiredo, I.N., Rodrigues, J.F., Santos, L. (eds) Free Boundary Problems. International Series of Numerical Mathematics, vol 154. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-7719-9_9

Download citation

Publish with us

Policies and ethics