Skip to main content

High-order Techniques for Calculating Surface Tension Forces

  • Conference paper
  • First Online:
Free Boundary Problems

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 154))

Abstract

In this paper we develop further the “height fraction” technique for computing curvature directly from volume fractions. In particular we, (1) develop a systematic approach for calculating curvature from volume fractions which is accurate to any order, and (2) we test the second-order “height fraction” technique on the following two-phase problems: (1) the break-up of a cylindrical column of liquid due to Rayleigh-capillary instability, (2) surface tension induced droplet oscillations and (3) the steady motion of gas bubbles rising in liquid.

Work supported in part by NSF grant number 0242524 (U.S. Japan Cooperative Science). Work supported in part by JSPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Aleinov and E.G. Puckett. Computing surface tension with high-order kernels. In Proceedings of the 6th International Symposium on Computational Fluid Dynamics, Lake Tahoe, CA, 1995.

    Google Scholar 

  2. D. Bhaga and M.E. Weber. Bubbles in viscous liquids: Shapes, wakes and velocities. J. Fluid Mech., 105:61–85, 1981.

    Article  Google Scholar 

  3. J.U. Brackbill, D.B. Kothe, and C. Zemach. A continuum method for modeling surface tension. J. Comput. Phys., 100:335–353, 1992.

    Article  MathSciNet  Google Scholar 

  4. A.J. Chorin. Curvature and solidification. J. Comput. Phys., 57:472–490, 1985.

    Article  MathSciNet  Google Scholar 

  5. S. Cummins, M. Francois, and D. Kothe. Estimating curvature from volume fractions. Computers and Structures, 83:425–434, 2005.

    Article  Google Scholar 

  6. D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water surfaces. In SIGGRAPH 2002, volume ACM TOG 21, pages 736–744, 2002.

    Google Scholar 

  7. M. Francois, S. Cummins, E. Dendy, D. Kothe, J. Sicilian, and M. Williams. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys., 2005. in press.

    Google Scholar 

  8. D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski. Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys., 152:423–456, 1999.

    Article  Google Scholar 

  9. J. Helmsen, P. Colella, and E.G. Puckett. Non-convex profile evolution in two dimensions using volume of fluids. LBNL technical report LBNL-40693, Lawrence Berkeley National Laboratory, 1997.

    Google Scholar 

  10. J.G. Hnat and J.D. Buckmaster. Spherical cap bubbles and skirt formation. Physics of Fluids, 19(2):182–194, 1976.

    Article  Google Scholar 

  11. E. Jimenez, M. Sussman, and M. Ohta. A computational study of bubble motion in newtonian and viscoelastic fluids. Fluid Dynamics and Materials Processing, 2005. (to appear).

    Google Scholar 

  12. M. Kang, R. Fedkiw, and X.-D. Liu. A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput., 15:323–360, 2000.

    Article  MathSciNet  Google Scholar 

  13. H. Liu, S. Krishnan, S. Marella, and H.S. Udaykumar. Sharp interface cartesian grid method ii: A technique for simulating droplet interactions with surfaces of arbitrary shape. J. Computational Physics, 210(1):32–54, 2005.

    Article  MathSciNet  Google Scholar 

  14. M.R. Nobari, Y.J. Jan, and G. Tryggvason. Head on collision of drops; a numerical investigation. Technical Report ICOMP-93-45, NASA ICOMP Lewis Research Center, November 1993.

    Google Scholar 

  15. J.Y. Poo and N. Ashgriz. A computational method for determining curvatures. J. Comput. Phys., 84:483–491, 1989.

    Article  Google Scholar 

  16. S. Popinet and S. Zaleski. A front-tracking algorithm for accurate representation of surface tension. International Journal for Numerical Methods in Fluids, 30(6):775–793, 1999.

    Article  Google Scholar 

  17. Y. Renardy and M. Renardy. Prost: A parabolic reconstruction of surface tension for the volume-of-fluid method. J. Comput. Phys., 183(2):400–421, 2002.

    Article  MathSciNet  Google Scholar 

  18. M. Rudman. A volume tracking method for interfacial flows with large density variations. Int. J. Numer. Methods Fluids, 28:357–378, 1998.

    Article  Google Scholar 

  19. G. Ryskin and L.G. Leal. Numerical solution of free boundary problems in fluid mechanics. part 2 buoyancy-driven motion of a gas bubble through a quiescent liquid. J. Fluid Mech., 148:19–35, 1984.

    Article  Google Scholar 

  20. M. Sussman. A second-order coupled levelset and volume of fluid method for computing growth and collapse of vapor bubbles. Journal of Computational Physics, 187:110–136, 2003.

    Article  MathSciNet  Google Scholar 

  21. M. Sussman and M.Y. Hussaini. A discontinuous spectral element method for the level set equation. J. Scientific Computing, 19:479–500, 2003.

    Article  MathSciNet  Google Scholar 

  22. M. Sussman, M.Y. Hussaini, K. Smith, R. Zhi-Wei, and V. Mihalef. A second-order adaptive sharp interface method for incompressible multiphase flow. In Proceedings of the 3rd international conference on Computational Fluid Dynamics, Toronto, Canada, 2004. to appear.

    Google Scholar 

  23. M. Sussman and E.G. Puckett. A coupled level set and volume of fluid method for computing 3d and axisymmetric incompressible two-phase flows. J. Comp. Phys., 162:301–337, 2000.

    Article  MathSciNet  Google Scholar 

  24. M. Sussman, P. Smereka, and S.J. Osher. A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys., 114:146–159, 1994.

    Article  Google Scholar 

  25. H.S. Udaykumar, M.M. Rao, and W. Shyy. Elafint — a mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. Int. J. Numer. Meths. Fluids., 22(8):691–704, 1996.

    Article  MathSciNet  Google Scholar 

  26. S.O. Unverdi and G. Tryggvason. A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys., 100:25–37, 1992.

    Article  Google Scholar 

  27. M. Williams, D. Kothe, and E.G. Puckett. Convergence and accuracy of kernel-based continuum surface tension models. In Proceedings of the Thirteenth U.S. National Congress of Applied Mechanics, Gainesville, FL, June 16–21 1998.

    Google Scholar 

  28. T. Ye, W. Shyy, and J.N. Chung. A fixed-grid, sharp interface method for bubble dynamics and phase change. J. Comp. Phys., 174:781–815, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Sussman, M., Ohta, M. (2006). High-order Techniques for Calculating Surface Tension Forces. In: Figueiredo, I.N., Rodrigues, J.F., Santos, L. (eds) Free Boundary Problems. International Series of Numerical Mathematics, vol 154. Birkhäuser, Basel. https://doi.org/10.1007/978-3-7643-7719-9_41

Download citation

Publish with us

Policies and ethics