Adaptive Finite Elements with High Aspect Ratio for Dendritic Growth of a Binary Alloy Including Fluid Flow Induced by Shrinkage

  • Jacek Narski
  • Marco Picasso
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 154)


An adaptive phase field model for the solidification of binary alloys in two space dimensions is presented. The fluid flow in the liquid due to different liquid/solid densities is taken into account. The unknowns are the phase field, the alloy concentration and the velocity/pressure in the liquid.

Continuous, piecewise linear finite elements are used for the space discretization, a semi-implicit scheme is used for time discretization. An adaptive method allows the number of degrees of freedom to be reduced, the mesh triangles having high aspect ratio whenever needed.

Numerical results are presented for dendritic growth of four dendrites.


Binary Alloy High Aspect Ratio Posteriori Error Dendritic Growth Liquid Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W.J. Boettinger, S.R. Coriell, A.L. Greer, A. Karma, W. Kurz, M. Rappaz, and R. Trivedi. Solidification microstructures: Recent developments, future directions. Acta Materialia, 48(1):43–70, 2000.CrossRefGoogle Scholar
  2. [2]
    D. Juric and G. Tryggvason. A front-tracking method for dendritic solidification. J. Comput. Phys., 123(1):127–148, 1996.CrossRefMathSciNetMATHGoogle Scholar
  3. [3]
    A. Jacot and M. Rappaz. A pseudo-front tracking technique for the modelling of solidification microstructures in multi-component alloys. Acta Mater., 50(8):1909–1926, 2002.CrossRefGoogle Scholar
  4. [4]
    M. Fried. A level set based finite element algorithm for the simulation of dendritic growth. Comput. Vis. Sci., 7(2):97–110, 2004.CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    F. Gibou, R. Fedkiw, R. Caflisch, and S. Osher. A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput., 19(1–3):183–199, 2003.CrossRefMathSciNetMATHGoogle Scholar
  6. [6]
    J.B. Collins and H. Levine. Diffuse interface model of diffusion-limited crystal growth. Phys. Rev. B, 31(9):6119–6122, 1985.CrossRefGoogle Scholar
  7. [7]
    G. Caginalp and W. Xie. Phase-field and sharp-interface alloy models. Phys. Rev. E (3), 48(3):1897–1909, 1993.MathSciNetGoogle Scholar
  8. [8]
    R. Kobayashi. Modeling and numerical simulations of dendritic crystal growth. Physica D, 63:410–423, 1993.CrossRefMATHGoogle Scholar
  9. [9]
    A. Karma. Phase-field model of eutectic growth. Phys. Rev. E, 49:2245–2250, 1994.CrossRefGoogle Scholar
  10. [10]
    J.A. Warren and W.J. Boettinger. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field model. Acta Metall. Mater., 43(2):689–703, 1995.CrossRefGoogle Scholar
  11. [11]
    L.Q. Chen. Phase-field models for microstructure evolutions. Annual Rev. Mater. Res., 32:163–194, 2002.CrossRefGoogle Scholar
  12. [12]
    A. Schmidt. Computation of three dimensional dendrites with finite elements. J. Comput. Phys., 125(2):293–312, 1996.CrossRefMATHGoogle Scholar
  13. [13]
    N. Provatas, N. Goldenfeld, and J. Dantzig. Adaptive mesh refinement computation of solidification microstructures using dynamic data structures. J. Comput. Phys., 148(1):265–290, 1999.CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    E. Burman and M. Picasso. Anisotropic, adaptive finite elements for the computation of a solutal dendrite. Interfaces Free Bound., 5(2):103–127, 2003.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    E. Burman, A. Jacot, and M. Picasso. Adaptive finite elements with high aspect ratio for the computation of coalescence using a phase-field model. J. Comput. Phys., 195(1):153–174, 2004.CrossRefMathSciNetMATHGoogle Scholar
  16. [16]
    J. Ni and C. Beckermann. A volume-averaged 2-phase model for transport phenomena during solidification. Metall. Trans. B, 22(3):349–361, 1991.Google Scholar
  17. [17]
    C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, and X. Tong. Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys., 154(2):468–496, 1999.CrossRefMATHGoogle Scholar
  18. [18]
    B. Nestler, A.A. Wheeler, L. Ratke, and C. Stöcker. Phase-field model for solidification of a monotectic alloy with convection. Phys. D, 141(1–2):133–154, 2000.CrossRefMathSciNetMATHGoogle Scholar
  19. [19]
    J.H. Jeong, N. Goldenfeld, and J. Dantzig. Phase field model for three-dimensional dendritic growth with fluid flow. Phys. Rev. E, 64(4):041602, 2001.CrossRefGoogle Scholar
  20. [20]
    W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma. Phase-field simulation of solidification. Annu. Rev. Mater. Res., 32:163–194, 2002.CrossRefGoogle Scholar
  21. [21]
    D.M. Anderson, G.B. McFadden, and A.A. Wheeler. A phase-field model of solidification with convection. Phys. D, 135(1–2):175–194, 2000.CrossRefMathSciNetMATHGoogle Scholar
  22. [22]
    D.M. Anderson, G.B. McFadden, and A.A. Wheeler. A phase-field model with convection: sharp-interface asymptotics. Phys. D, 151(2–4):305–331, 2001.CrossRefMathSciNetMATHGoogle Scholar
  23. [23]
    J.C. Heinrich and D.R. Poirier. Convection modeling in directional solidification. C. R. Mecanique, 332:429–445, 2004.CrossRefGoogle Scholar
  24. [24]
    M. Griebel, W. Merz, and T. Neunhoeffer. Mathematical modeling and numerical simulation of freezing processes of a supercooled melt under consideration of density changes. Comp. Vis. Sci., 1(4):201–219, 1999.CrossRefMATHGoogle Scholar
  25. [25]
    Y. Sun and C. Beckermann. Diffuse interface modeling of two-phase flows based on averaging: mass and momentum equations. Phys. D, 198(3–4):281–308, 2004.CrossRefMathSciNetMATHGoogle Scholar
  26. [26]
    E. Burman and J. Rappaz. Existence of solutions to an anisotropic phase-field model. Math. Methods Appl. Sci., 26(13):1137–1160, 2003.CrossRefMathSciNetMATHGoogle Scholar
  27. [27]
    M. Picasso. Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator. Comm. Numer. Methods Engrg., 19(1):13–23, 2003.CrossRefMathSciNetMATHGoogle Scholar
  28. [28]
    M. Picasso. An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: application to elliptic and parabolic problems. SIAM J. Sci. Comput., 24(4):1328–1355 (electronic), 2003.CrossRefMathSciNetMATHGoogle Scholar
  29. [29]
    M. Picasso. An adaptive algorithm for the stokes problem using continuous, piecewise linear stabilized finite elements and meshes with high aspect ratio. Appl. Numer. Math., 54(3–4):470–490, 2005.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Jacek Narski
    • 1
  • Marco Picasso
    • 1
  1. 1.Institut d’Analyse et Calcul ScientifiqueEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations