Obstacle Problems for Monotone Operators with Measure Data

  • Chiara Leone
Part of the International Series of Numerical Mathematics book series (ISNM, volume 154)


The aim of this work is to study obstacle problems associated to monotone operators when the forcing term is a bounded Radon measure. Existence, uniqueness, stability results, and properties of the solutions are investigated.


Measure Data Variational Inequality Monotone Operator Force Term Entropy Solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Attouch, C. Picard, Problèmes variationnels et théorie du potential non linéaire, Ann. Faculté Sci. Toulouse 1 (1979), 89–136.MathSciNetMATHGoogle Scholar
  2. [2]
    L. Benilan, L. Boccardo, T. Galloüet, R. Gariepy, M. Pierre, J.L. Vazquez, An L 1-theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa 22 (1995), 240–273.Google Scholar
  3. [3]
    L. Boccardo, G.R. Cirmi, Nonsmooth unilateral problems. Nonsmooth optimization: methods and applications (Erice, 1991), F. Giannessi ed., 1–10, Gordon and Breach, Amsterdam 1992.Google Scholar
  4. [4]
    L. Boccardo, G.R. Cirmi, Existence and uniqueness of solution of unilateral problems with L 1-data, J. Convex Anal. 6 (1999), 195–206MathSciNetMATHGoogle Scholar
  5. [5]
    L. Boccardo, T. Galloüet, Problèmes unilatéraux avec données dans L 1, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), 617–619.MATHGoogle Scholar
  6. [6]
    L. Boccardo, T. Galloüet, L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré 13 (1996), 539–551.MATHGoogle Scholar
  7. [7]
    L. Boccardo, F. Murat, Nouveaux résultats de convergence dans des problèmes unilat éraux, Nonlinear partial differential equations and their applications (Collège de France séminaire), Pitman Res. Notes Math. 60 (1962), 64–85.MathSciNetGoogle Scholar
  8. [8]
    H. Brezis, S. Serfaty, A variational formulation for the two-sided obstacle problem with measure data, Commun. Contemp. Math. 4 (2002), 357–374.CrossRefMathSciNetMATHGoogle Scholar
  9. [9]
    H. Brezis, A. Ponce, Reduced measures for obstacle problems, Adv. Differential Equations, 10 (2005), 1201–1234.MathSciNetMATHGoogle Scholar
  10. [10]
    V. Chiadò Piat, A. Defranceschi, Asymptotic behaviour of quasi linear problems with Neumann boundary conditions on perforated domains, Appl. Anal. 36 (1990), 65–87.MathSciNetMATHGoogle Scholar
  11. [11]
    A. Dall’Aglio, Approximated solutions of equations with L 1 data, Ann. Mat. Pura Appl. 170 (1996), 207–240.CrossRefMathSciNetMATHGoogle Scholar
  12. [12]
    P. Dall’Aglio, G. Dal Maso, Some properties of the solutions of obstacle problems with measure data, Ricerche Mat. 48 (1999), 99–116.MathSciNetMATHGoogle Scholar
  13. [13]
    P. Dall’Aglio, C. Leone, Obstacle problems with measure data and linear operators, Potential Anal. 17 (2002), 45–64.CrossRefMathSciNetMATHGoogle Scholar
  14. [14]
    G. Dal Maso, A. Defranceschi, Convergence of unilateral problems for monotone operators, J. Analyse Math. 53 (1989), 269–289.MathSciNetMATHGoogle Scholar
  15. [15]
    G. Dal Maso, A. Malusa, Some properties of reachable solutions of nonlinear elliptic equations with measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1997), 375–396.MathSciNetMATHGoogle Scholar
  16. [16]
    G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999), 741–808.MathSciNetMATHGoogle Scholar
  17. [17]
    T. Del Vecchio, On the homogenization of a class of pseudomonotone operators in divergence form, Boll. Un. Mat. Ital. 7 (1991), 369–388.Google Scholar
  18. [18]
    M. Fukushima, K. Sato, S. Taniguchi, On the closable part of pre-Dirichlet forms and the fine support of the underlying measures, Osaka J. Math. 28 (1991), 517–535.MathSciNetMATHGoogle Scholar
  19. [19]
    J. Heinonen, T. Kilpeläinen, O. Martio, Nonlinear potential theory of degenerate elliptic equations. Clarendon Press, Oxford, 1993.MATHGoogle Scholar
  20. [20]
    D. Kinderlehrer, G. Stampacchia, An introduction to Variational Inequalities and their applications. Academic, New York, 1980.MATHGoogle Scholar
  21. [21]
    C. Leone, On a class of nonlinear obstacle problems with measure data, Comm. Partial Differ. Equations 25 (2000), 2259–2286.MathSciNetMATHGoogle Scholar
  22. [22]
    C. Leone, Existence and uniqueness of solutions for nonlinear obstacle problems with measure data, Nonlinear Anal. 43 (2001), 199–215.CrossRefMathSciNetMATHGoogle Scholar
  23. [23]
    C. Leone, Stability results for obstacle problems with measure data, Ann. Inst. H. Poincaré, 22 (2005), 679–704.CrossRefMathSciNetMATHGoogle Scholar
  24. [24]
    H. Lewy, G. Stampacchia, On the smoothness of superharmonics which solve a minimum problem, J. Analyse Math. 23 (1970), 227–236.MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris, 1969.MATHGoogle Scholar
  26. [26]
    P.L. Lions, F. Murat, Solutions renormalisées d’équations elliptiques non linéaires, manuscript.Google Scholar
  27. [27]
    U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. in Math. 3 (1969), 510–585.CrossRefMathSciNetMATHGoogle Scholar
  28. [28]
    F. Murat, Équations elliptiques non linéaires avec second membre L 1 ou mesure, Actes du 26ème Congrés National d’Analyse Numérique, Les Karellis, France (1994), A12–A24.Google Scholar
  29. [29]
    P. Oppezzi, A.M. Rossi, Existence of solutions for unilateral problems with multi-valued operators, J. Convex Anal. 2 (1995), 241–261.MathSciNetMATHGoogle Scholar
  30. [30]
    P. Oppezzi, A.M. Rossi, Esistenza di soluzioni per problemi unilaterali con dato misura o L 1, Ricerche Mat. 45, 491–513.Google Scholar
  31. [31]
    A. Prignet, Remarks on the existence and uniqueness of solutions of elliptic problems with right-hand side measures, Rend. Mat. 15 (1995), 321–337.MathSciNetMATHGoogle Scholar
  32. [32]
    J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola Norm. Sup. Pisa 18 (1964), 385–387.MathSciNetMATHGoogle Scholar
  33. [33]
    G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier Grenoble 15 (1965), 189–258.MathSciNetMATHGoogle Scholar
  34. [34]
    L. Tartar, Cours Peccot au Collège de France, Paris 1977.Google Scholar
  35. [35]
    G.M. Troianiello, Elliptic differential equations and obstacle problems. Plenum Press, New York, 1987.MATHGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Chiara Leone
    • 1
  1. 1.Dipartimento di Matematica “R. Caccioppoli”Università degli Studi di Napoli “Federico II”NapoliItaly

Personalised recommendations