Some P.D.E.s with Hysteresis

  • Michela Eleuteri
Conference paper
Part of the International Series of Numerical Mathematics book series (ISNM, volume 154)


We present some results concerning two classes of P.D.E.s containing a continuous hysteresis operator. We introduce a weak formulation in Sobolev spaces for a Cauchy problem; under suitable assumptions on the hysteresis operator, we state some existence results. The presentation of the paper is quite general, as we avoid to describe all the details of the proof of the theorems involved.


Hydraulic Conductivity Cauchy Problem Sobolev Space Model Problem Existence Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Bagagiolo, A. Visintin: Hysteresis in filtration through porous media, Z. Anal. Anwendungen 19(4) (2000) 977–998.MathSciNetGoogle Scholar
  2. [2]
    F. Bagagiolo, A. Visintin: Porous media filtration with hysteresis, Adv. Math. Sci. Appl. 14 (2004) 379–403.MathSciNetGoogle Scholar
  3. [3]
    H. Brezis: Analyse fonctionnelle, Théorie et applications, Masson, Paris (1983).MATHGoogle Scholar
  4. [4]
    M. Brokate, J. Sprekels: Hysteresis and phase transitions, Applied Mathematical Sciences, 121, Springer-Verlag, New York (1996).Google Scholar
  5. [5]
    M. Eleuteri: On some P.D.E.s with hysteresis, Ph.D. Thesis, UTM PhDTS n. 47, Trento, February 2006.Google Scholar
  6. [6]
    J.D. Jackson: Classical electrodynamics, New York, Wiley, 1975.MATHGoogle Scholar
  7. [7]
    M.A. Krasnosel’skii, B.M. Darinskii, I.V. Emelin, P.P. Zabreiko, E.A. Lifsic, A.V. Pokrovskii: Hysterant operator, Soviet Math. Dokl., 11 (1970) 29–33.Google Scholar
  8. [8]
    M.A. Krasnosel’skii, A.V. Pokrovskii: Systems with hysteresis, Springer, Berlin (1989), Russian edition: Nauka, Moscow (1983).MATHGoogle Scholar
  9. [9]
    P. Krejčí: Hysteresis, convexity and dissipation in hyperbolic equations, Tokyo: Gakkotosho, (1996).Google Scholar
  10. [10]
    I.D. Mayergoyz: Mathematical models of hysteresis, Springer, New York (1991).MATHGoogle Scholar
  11. [11]
    A. Visintin: Differential Models of Hysteresis, Springer, (1994).Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Michela Eleuteri
    • 1
  1. 1.Department of Mathematics of TrentoPovo, TrentoItaly

Personalised recommendations