Skip to main content

Lefschetz Theory on Manifolds with Singularities

  • Chapter
C*-algebras and Elliptic Theory

Part of the book series: Trends in Mathematics ((TM))

Abstract

The semiclassical method in Lefschetz theory is presented and applied to the computation of Lefschetz numbers of endomorphisms of elliptic complexes on manifolds with singularities. Two distinct cases are considered, one in which the endomorphism is geometric and the other in which the endomorphism is specified by Fourier integral operators associated with a canonical transformation. In the latter case, the problem includes a small parameter and the formulas are (semiclassically) asymptotic. In the first case, the parameter is introduced artificially and the semiclassical method gives exact answers. In both cases, the Lefschetz number is the sum of contributions of interior fixed points given (in the case of geometric endomorphisms) by standard formulas plus the contribution of fixed singular points. The latter is expressed as a sum of residues in the lower or upper half-plane of a meromorphic operator expression constructed from the conormal symbols of the operators involved in the problem.

A preliminary version of the paper was published as a preprint at Chalmers University of Technology and supported by a grant from the Swedish Royal Academy of Sciences. We also acknowledge support from the RFBR under grants Nos.05-01-00466 and 05-01-00982.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Atiyah and R. Bott, A Lefschetz Fixed Point Formula for Elliptic Complexes I. Ann. of Math. 86 (1967), 374–407.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. Lefschetz, L’analysis situs et la géométrie algébrique. Gauthier-Villars, Paris, 1924.

    Google Scholar 

  3. V. Nazaikinskii, B.-W. Schulze, B. Sternin, and V. Shatalov, The Atiyah-Bott-Lefschetz Fixed Point Theorem for Manifolds with Conical Singularities. Ann. Global Anal. Geom. 17:5 (1999), 409–439.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Nazaikinskii, B.-W. Schulze, and B. Sternin, A Semiclassical Quantization on Manifolds with Singularities and the Lefschetz Formula for Elliptic Operators. Preprint No. 98/19, Univ. Potsdam, Institut fĂĽr Mathematik, Potsdam, 1998.

    Google Scholar 

  5. V. Nazaikinskii, Semiclassical Lefschetz Formulas on Smooth and Singular Manifolds. Russ. J. Math. Phys. 6:2 (1999), 202–213.

    MATH  MathSciNet  Google Scholar 

  6. B. Sternin and V. Shatalov, Atiyah-Bott-Lefschetz Fixed Point Theorem in Symplectic Geometry. Dokl. Akad. Nauk 348:2 (1996), 165–168.

    MATH  MathSciNet  Google Scholar 

  7. B. Sternin and V. Shatalov, The Fixed Point Lefschetz Theorem for Quantized Canonical Transformations. Funktsional. Anal. i Prilozhen. 32:4 (1998), 35–48.

    MATH  MathSciNet  Google Scholar 

  8. B. Sternin and V. Shatalov, Quantization of Symplectic Transformations and the Lefschetz Fixed Point Theorem. Preprint No. 92, Max-Planck-Institut fĂĽr Mathematik, Bonn, 1994.

    Google Scholar 

  9. V.P. Maslov, Perturbation Theory and Asymptotic Methods. Moscow State University, Moscow, 1965.

    Google Scholar 

  10. V.P. Maslov, Operator Methods. Nauka, Moscow, 1973.

    MATH  Google Scholar 

  11. A. Mishchenko, V. Shatalov, and B. Sternin, Lagrangian Manifolds and the Maslov Operator. Springer-Verlag, Berlin-Heidelberg, 1990.

    MATH  Google Scholar 

  12. V. Nazaikinskii, B. Sternin, and V. Shatalov, Contact Geometry and Linear Differential Equations. Walter de Gruyter, Berlin-New York, 1992.

    Google Scholar 

  13. V. Nazaikinskii, B. Sternin, and V. Shatalov, Methods of Noncommutative Analysis. Theory and Applications. Walter de Gruyter, Berlin-New York, 1995.

    MATH  Google Scholar 

  14. B.V. Fedosov, Trace Formula for Schrödinger Operator. Russ. J. Math. Phys. 1:4 (1993), 447–463.

    MATH  MathSciNet  Google Scholar 

  15. B. Sternin and V. Shatalov, Ten Lectures on Quantization. Preprint No. 22, Universit Ă© de Nice-Sophia Antipolis, Nice, 1994.

    Google Scholar 

  16. B.-W. Schulze, Elliptic Complexes on Manifolds with Conical Singularities. In: Seminar Analysis of the Karl Weierstraß Institute 1986/87, number 106 in Teubner Texte zur Mathematik, Teubner, Leipzig, 1988. Pages 170–223.

    Google Scholar 

  17. B.-W. Schulze, Pseudodifferential Operators on Manifolds with Singularities. North-Holland, Amsterdam, 1991.

    Google Scholar 

  18. B.A. Plamenevskii, Algebras of Pseudodifferantial Operators. Kluwer, Dordrecht, 1989.

    Google Scholar 

  19. B.-W. Schulze, B. Sternin, and V. Shatalov, Differential Equations on Singular Manifolds. Semiclassical Theory and Operator Algebras. Wiley-VCH, Berlin-New York, 1998.

    MATH  Google Scholar 

  20. M. Agranovich and M. Vishik, Elliptic Problems with Parameter and Parabolic Problems of General Type. Uspekhi Mat. Nauk 19:3 (1964), 53–161.

    MATH  Google Scholar 

  21. M.A. Shubin, Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin-Heidelberg, 1985.

    MATH  Google Scholar 

  22. M.S. Agranovich, B.Z. Katsenelenbaum, A.N. Sivov, and N.N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory. Wiley-VCH, Berlin, 1999.

    Google Scholar 

  23. A. Martinez, Microlocal Exponential Estimates and Applications to Tunneling. In: Microlocal Analysis and Spectral Theory, Kluwer, 1997. Pages 349–376.

    Google Scholar 

  24. L. Hörmander, The Spectral Function of an Elliptic Operator. Acta Math. 121 (1968), 193–218.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Melrose, Transformation of Boundary Problems. Acta Math. 147 (1981), 149–236.

    Article  MATH  MathSciNet  Google Scholar 

  26. V. Nazaikinskii, B.-W. Schulze, B. Sternin, and V. Shatalov, Quantization of Symplectic Transformations on Manifolds with Conical Singularities. Preprint No. 97/23, Univ. Potsdam, Institut fĂĽr Mathematik, Potsdam, 1997.

    Google Scholar 

  27. V. Nazaikinskii, B.-W. Schulze, B. Sternin, and V. Shatalov, A Lefschetz Fixed Point Theorem on Manifolds with Conical Singularities. Preprint No. 97/20, Univ. Potsdam, Institut fĂĽr Mathematik, Potsdam, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Nazaikinskii, V., Sternin, B. (2006). Lefschetz Theory on Manifolds with Singularities. In: Bojarski, B., Mishchenko, A.S., Troitsky, E.V., Weber, A. (eds) C*-algebras and Elliptic Theory. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7687-1_8

Download citation

Publish with us

Policies and ethics