Advertisement

Approximation Properties for Discrete Groups

  • Jacek Brodzki
  • Graham A. Niblo
Chapter
Part of the Trends in Mathematics book series (TM)

Abstract

We provide an illustration of an interesting and nontrivial interaction between analytic and geometric properties of a group. We provide a short survey of approximation properties of operator algebras associated with discrete groups. We then demonstrate directly that groups that satisfy the property RD with respect to a conditionally negative length function have the metric approximation property.

Keywords

Rapid decay metric approximation property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.R. Bridson, A. Haefliger, Metric spaces of non-positive curvature. Springer Verlag, Berlin 1999.zbMATHGoogle Scholar
  2. [2]
    I. Chatterji, Property (RD) for cocompact lattices in a finite product of rank one Lie groups with some rank two Lie groups. Geom. Dedicata 96 (2003), 161–177.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    I. Chatterji, K. Ruane, Some geometric groups with rapid decay. Geom. Funct. Anal. 15 (2005), no. 2, 311–339.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    J. de Canniere, U. Haagerup, Multipliers of the Fourier algebra of some simple Lie groups and their discrete subgroups. Amer. J. Math. 107 (1984), 455–500.CrossRefGoogle Scholar
  5. [5]
    P. Eymard, L’algèbre de Fourier d’un groupe localement compact. (French) Bull. Soc. Math. France 92 (1964), 181–236.zbMATHMathSciNetGoogle Scholar
  6. [6]
    J. Faraut and K. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier (Grenoble) 24 (1974), no. 3, xiv, 171–217.zbMATHMathSciNetGoogle Scholar
  7. [7]
    A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. (1955), no. 16, 140 pp.Google Scholar
  8. [8]
    U. Haagerup, An example of a non-nuclear C*-algebra which has the metric approximation property. Inventiones Math. 50 (1979), 279–293.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    U. Haagerup, J. Kraus, Approximation properties for group C*-algebras and group von Neumann algebras. Trans. Amer. Math. Soc. 344 (1994), no. 2, 667–699.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    P. de la Harpe, Groupes hyperboliques, algèbres d’opérateurs et un théorème de Jolissaint. C. R. Acad. Sci. Paris Ser. I 307 (1988), 771–774zbMATHGoogle Scholar
  11. [11]
    P. de la Harpe, A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts. Astérisque 175 (1989), Soc. Mathématique de France.Google Scholar
  12. [12]
    P. Jolissaint, Rapidly decreasing functions in reduced C*-algebras of groups. Trans. Amer. Math. Soc. 317 (1990), 167–196.zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    P. Jolissaint, A. Valette, Normes de Sobolev et convoluteurs bornés sur L 2(G). Ann. Inst. Fourier (Grenoble) 41 (1991), no. 4, 797–822.MathSciNetGoogle Scholar
  14. [14]
    E. Kirchberg, S. Wassermann, Exact groups and continuous bundles of C*-algebras. Math. Ann. 315 (1999), no. 2, 169–203.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    V. Lafforgue, A proof of property (RD) for cocompact lattices of SL(3,R) and SL(3,C). J. Lie Theory 10 (2000), no. 2, 255–267zbMATHMathSciNetGoogle Scholar
  16. [16]
    E.C. Lance, On nuclear C*-algebras. J. Functional Analysis 12 (1973), 157–176zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    H. Leptin, Sur l’algèbre de Fourier d’un groupe localement compact. (French) C.R. Acad. Sci. Paris Sér. A-B 266 (1968) A1180–A1182.MathSciNetGoogle Scholar
  18. [18]
    V. Mathai, Heat kernels and the range of the trace on completions of twisted group algebras. Contemporary Mathematics 398 (2006), 321–346.MathSciNetGoogle Scholar
  19. [19]
    G.A.Niblo, L.D. Reeves, The geometry of cube complexes and the complexity of their fundamental groups. Topology, Vol. 37, No 3, (1988) 621–633.MathSciNetCrossRefGoogle Scholar
  20. [20]
    G.A. Niblo and L.D. Reeves, Coxeter groups act on CAT(0) cube complexes. Journal of Group Theory, 6, (2003), 309–413.MathSciNetCrossRefGoogle Scholar
  21. [21]
    V. Paulsen, Completely bounded maps and dilations. Pitman Research Notes in Mathematics Series, 146 Longman, New York, 1986.zbMATHGoogle Scholar
  22. [22]
    G. Robertson, Crofton formulae and geodesic distance in hyperbolic spaces. J. Lie Theory 8 (1998), no. 1, 163–172.zbMATHMathSciNetGoogle Scholar
  23. [23]
    S. Wassermann, Exact C*-algebras and related topics. Lecture Notes Series, 19. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1994.Google Scholar
  24. [24]
    Daniel T. Wise, Cubulating Small Cancellation Groups. Geometric and Functional Analysis 14, no. 1, 150–214.Google Scholar
  25. [25]
    G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139 (2000), no. 1, 201–240.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Jacek Brodzki
    • 1
  • Graham A. Niblo
    • 1
  1. 1.School of Mathematical SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations