Advertisement

Bundles of C*-algebras and the KK(X;−,−)-bifunctor

  • Ezio Vasselli
Chapter
  • 554 Downloads
Part of the Trends in Mathematics book series (TM)

Abstract

An overview about C*-algebra bundles with a ℤ-grading is presented, with particular emphasis on classification questions. In particular, we discuss the role of the representable KK(X;−,−)-bifunctor introduced by Kasparov. As an application, we consider Cuntz-Pimsner algebras associated with vector bundles, and give a classification in terms of K-theoretical invariants in the case in which the base space is an n-sphere.

Keywords

KK-theory Continuous bundle Vector Bundle Cuntz-Pimsner-algebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Abadie, S. Eilers, R. Exel, Morita Equivalence for Generalized Crossed Products. Trans. Amer. Math. Soc. 350 (1998), 3043–3054.zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    M.F. Atiyah, K-Theory. Benjamin, 1967.Google Scholar
  3. [3]
    L.G. Brown, P. Green, M.A. Rieffel, Stable isomorphisms and strong Morita equivalence of C*-algebras. Pac. J. Math. 71 (1977), 349–363.zbMATHMathSciNetGoogle Scholar
  4. [4]
    B. Blackadar, K-Theory of Operator Algebras. MSRI Publications, 1995.Google Scholar
  5. [5]
    E. Blanchard, Tensor Products of C(X)-algebras over C(X) Astérisqque 232 (1995), 81–92.zbMATHMathSciNetGoogle Scholar
  6. [6]
    J. Cuntz, Simple C*-algebras Generated by Isometries. Comm. Math. Phys. 57 (1977), 173–185.zbMATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Dixmier, C*-algebras. North-Holland Publishing Company, 1977.Google Scholar
  8. [8]
    S. Doplicher, C. Pinzari, R. Zuccante, The C*-algebra of a Hilbert bimodule. Bollettino UMI, Serie VIII 1B (1998), 263–282.MathSciNetGoogle Scholar
  9. [9]
    R. Exel, Circle Actions on C*-Algebras, Partial Automorphisms and a Generalized Pimsner-Voiculescu Exact Sequence. J. Funct. Anal. 122 (1994), 361–401.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    D. Husemoller, Fibre Bundles. Mc Graw-Hill Series in Mathematics, 1966.Google Scholar
  11. [11]
    G. Kasparov, Equivariant KK-Theory and the Novikov Conjecture. Invent. Math. 91 (1988), 147–201.zbMATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    E. Kirchberg, The classification of purely infinite C*-algebras using Kasparov’s theory. in: C*-algebras. Springer, 2000.Google Scholar
  13. [13]
    E. Kirchberg, Das nicht-kommutative Michael-Auswahlprinzip und die Klassifikation nicht-einfacher Algebren. Geometrische Strukturen in der Mathematik, Preprint-Reihe SFB 478 (2000).Google Scholar
  14. [14]
    E. Kirchberg, S. Wassermann, Operations on Continuous Bundles of C*-algebras. Mathematische Annalen 303 (1995), 677–697.zbMATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    A.S. Mishchenko, A.T. Fomenko, The Index of Elliptic Operators over C*-algebras. Math. USSR Izvestija 15(1) (1980), 87–112.zbMATHCrossRefGoogle Scholar
  16. [16]
    M. Nilsen, C*-Bundles and C 0(X)-algebras. Indiana Univ. Math. J. 45 (1996), 463–477.zbMATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    V. Nistor, Fields of AF-algebras. J. Oper. Theory 28 (1992), 3–25.zbMATHMathSciNetGoogle Scholar
  18. [18]
    G.K. Pedersen: C*-algebras and their automorphism groups. Academic Press, 1979.Google Scholar
  19. [19]
    N.C. Phillips, A classification theorem for nuclear purely infinite simple C*-algebras. Preprint ArXiv funct-an/9506010.Google Scholar
  20. [20]
    M. Pimsner, A Class of C*-algebras generalizing both Cuntz-Krieger algebras and Cross Products by ℤ. in: Free Probability Theory. AMS, 1993.Google Scholar
  21. [21]
    G. Segal, Fredholm Complexes. Quart. J. Math. Oxford 21 (1970), 385–402.zbMATHGoogle Scholar
  22. [22]
    K. Thomsen, The Homotopy Type of the Group of Automorphisms of a UHF-algebra. J. Funct. Anal. 72 (1987), 182–207.zbMATHMathSciNetCrossRefGoogle Scholar
  23. [23]
    E. Vasselli, Continuous Fields of C*-algebras Arising from Extensions of Tensor C*-Categories. J. Funct. Anal. 199 (2003), 122–152.zbMATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    E. Vasselli: The C*-algebra of a vector bundle and fields of Cuntz algebras. ArXiv math.OA/0404166, J. Funct. Anal. 222 (2005), 491–502.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Ezio Vasselli
    • 1
  1. 1.Dipartimento di MatematicaUniversità La Sapienza di RomaRomaItaly

Personalised recommendations