On the Hopf-type Cyclic Cohomology with Coefficients

  • I. M. Nikonov
  • G. I. Sharygin
Part of the Trends in Mathematics book series (TM)


In this note we discuss the Hopf-type cyclic cohomology with coefficients, introduced in the paper [1]: we calculate it in a couple of interesting examples and propose a general construction of coupling between algebraic and coalgebraic version of such cohomology, taking values in the usual cyclic cohomology of an algebra.


Cyclic homology Hopf algebras Weil complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.M. Hajac, M. Khalkali, B. Rangipour, M. Sommerhäuser, Hopf-cyclic homology and cohomology with coefficients. C.R. Math. Acad. Sci. Paris 338 (2004), 667–672.zbMATHMathSciNetGoogle Scholar
  2. [2]
    J. Cuntz, D. Quillen, Cyclic homology and nonsingularity. J. Amer. Math. Soc. 8 (1995), 373–442.zbMATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    M. Crainic, Cyclic cohomology of Hopf algebras. J. Pure Appl. Algebra 166 (2002), 29–66.zbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Connes, H. Moscovici, Hopf algebras, cyclic cohomology and the transverse index theorem. Commun. Math. Phys. 198 (1998), 199–246.zbMATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Connes, H. Moscovici, Cyclic cohomology and Hopf algebras. Lett. Math. Phys. 52 (2000), 97–108.MathSciNetCrossRefGoogle Scholar
  6. [6]
    R. Taileffer, Cyclic homology of Hopf algebras. K-Theory 24 (2001), 69–85.MathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Akbarpour, M. Khalkhali, Equivariant cyclic cohomology of Hopf module algebras. J. reine angew. Math. 559 (2003), 137–152.zbMATHMathSciNetGoogle Scholar
  8. [8]
    M. Khalkhali, B. Rangipour, Invariant cyclic homology. K-Theory 28 (2003), 183–205.zbMATHMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Khalkhali, B. Rangipour, A new cyclic module for Hopf algebras. K-theory 27 (2002), 111–131.zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    J.-L. Loday, Cyclic homology. 2-nd Edition, Springer-Verlag, 1998.Google Scholar
  11. [11]
    M. Khalkhali, B. Rangipour, Cup Products in Hopf-Cyclic Cohomology. C.R. Math. Acad. Sci. Paris 340 (2005), 9–14.zbMATHMathSciNetGoogle Scholar
  12. [12]
    D. Quillen, Chern-Simons forms and cyclic cohomology. The interface of Mathematics and particle Physics, (Oxford, 1988), 117–134.Google Scholar
  13. [13]
    G. Sharygin, A new construction of characteristic classes for noncommutative algebraic principal bundles. Banach Center Publ. 61 (2003), 219–230.zbMATHMathSciNetCrossRefGoogle Scholar
  14. [14]
    I. Nikonov, G. Sharygin, Pairings in Hopf-type cyclic cohomology with coefficients. (in preparation)Google Scholar
  15. [15]
    D. Quillen, Algebra cochains and cyclic cohomology. Publ. Math. I.H.E.S. 68 (1989), 139–174.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • I. M. Nikonov
    • 1
  • G. I. Sharygin
    • 2
  1. 1.Dept. of Differential GeometryMoscow State UniversityMoscowRussia
  2. 2.ITEPMoscowRussia

Personalised recommendations