Modelling angiogenesis in inflammation

  • Chandan Alam
  • Paul Colville-Nash
  • Michael Seed
Part of the Progress in Inflammation Research book series (PIR)


Angiogenesis is an integral component of chronic inflammatory lesions and is essential for tissue development and repair. The inhibition of this process is a target for the development of novel therapeutics against chronic inflammation, especially those diseases where angiogenic blood vessels feature prominently, such as rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and psoriasis. The development of these vessels is stimulated by factors produced within the inflammatory milieu and are derived from inflammatory cells, not least macrophages, which produce angiogenic factors under the hypoxic conditions found within these tissues. Macrophages for example have the extraordinary capacity to produce just about every angiogenic growth factor and cytokine known [1, 2, 3], such as tumour necrosis factor (TNF)-α, basic fibroblast growth factor (FGF-2), transforming growth factor (TGF)-β, angiotropin, prostaglandin (PG) E2, granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, platelet-derived growth factor (PDGF), interleukin (IL)-6, vascular endothelial growth factor (VEGF), nitric oxide (NO), and angiotensin converting enzyme (ACE), but not all, angiogenin and platelet factor (PF) 4 being absent from their armamentarium. They do synthesise thrombospondin-1 (TP-1), which may be angiogenic or angiostatic depending on whether it is matrix bound or in the soluble or truncated form [4, 5, 6]. Thus, angiostatic factors may also be synthesised or elaborated, e.g. macrophage-derived enzymes such as metallo-elastase may mediate angiostatin release [7].


Chronic Granulomatous Disease Vascular Index HETISED Mouse STIMU Lated Rheumatic Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C (1994) Macrophages and angiogenesis. J Leukoc Biol 55: 410–422PubMedGoogle Scholar
  2. 2.
    Norrby K (2006) In vivo models of angiogenesis. J Cell Mol Med 10: 588–612PubMedGoogle Scholar
  3. 3.
    Szekanecz Z, Koch AE (2007) Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol 19: 289–295PubMedGoogle Scholar
  4. 4.
    Polverini PJ (1995) The pathophysiology of angiogenesis. Crit Rev Oral Biol Med 6: 230–247PubMedGoogle Scholar
  5. 5.
    Tuszynski GP, Nicosia RF (1996) The role of thrombospondin-1 in tumor progression and angiogenesis. Bioessays 18: 71–76PubMedGoogle Scholar
  6. 6.
    Qian X, Tuszynski GP (1996) Expression of thrombospondin-1 in cancer: A role in tumor progression. Proc Soc Exp Biol Med 212: 199–207PubMedGoogle Scholar
  7. 7.
    Dong Z, Kumar R, Yang X, Fidler IJ (1997) Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell 88: 801–810PubMedGoogle Scholar
  8. 8.
    Danese S, Sans M, Spencer DM, Beck I, Donate F, Plunkett ML, de la Motte C, Redline R, Shaw DE, Levine AD et al (2007) Angiogenesis blockade as a new therapeutic approach to experimental colitis. Gut 56: 855–862PubMedGoogle Scholar
  9. 9.
    Winkler JDJ, Jackson JR, Fan T-P, Seed MP (1999) Angiogenesis. Birkhäuser, BaselGoogle Scholar
  10. 10.
    Colville-Nash PR, Seed MP (1993) The current state of angiostatic therapy, with special reference to rheumatoid arthritis. Curr Opin Invest Drugs 2: 63–81Google Scholar
  11. 11.
    Auerbach R, Auerbach W, Polakowski I (1991) Assays for angiogenesis: A review. Pharmacol Ther 51: 1–11PubMedGoogle Scholar
  12. 12.
    Goodwin AM (2007) In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res 74: 172–183PubMedGoogle Scholar
  13. 13.
    Laschke MW, Menger MD (2007) In vitro and in vivo approaches to study angiogenesis in the pathophysiology and therapy of endometriosis. Hum Reprod Update 13: 331–342PubMedGoogle Scholar
  14. 14.
    Peacock DJ, Banquerigo ML, Brahn E (1992) Angiogenesis inhibition suppresses collagen arthritis. J Exp Med 175: 1135–1138PubMedGoogle Scholar
  15. 15.
    Peacock DJ, Banquerigo ML, Brahn E (1995) A novel angiogenesis inhibitor suppresses rat adjuvant arthritis. Cell Immunol 160: 178–184PubMedGoogle Scholar
  16. 16.
    Berger AE, Dortch KA, Staite ND, Mitchell MA, Evans BR, Holm MS (1993) Modulation of T lymphocyte function by the angiogenesis inhibitor AGM-1470. Agents Actions 39: C86–88PubMedGoogle Scholar
  17. 17.
    Antoine N, Daukandt M, Heinen E, Simar LJ, Castronovo V (1996) In vitro and in vivo stimulation of the murine immune system by AGM-1470, a potent angiogenesis inhibitor. Am J Pathol 148: 393–398PubMedGoogle Scholar
  18. 18.
    Antoine N, Daukandt M, Locigno R, Heinen E, Simar LJ, Castronovo V (1996) The potent angioinhibin AGM-1470 stimulates normal but not human tumoral lymphocytes. Tumori 82: 27–30PubMedGoogle Scholar
  19. 19.
    Schoof DD, Obando JA, Cusack JC Jr, Goedegebuure PS, Brem H, Eberlein TJ (1993) The influence of angiogenesis inhibitor AGM-1470 on immune system status and tumor growth in vitro. Int J Cancer 55: 630–635PubMedGoogle Scholar
  20. 20.
    Bainbridge J, Madden L, Essex D, Binks M, Malhotra R, Paleolog EM (2007) Methionine aminopeptidase-2 blockade reduces chronic collagen-induced arthritis: Potential role for angiogenesis inhibition. Arthritis Res Ther 9: R127PubMedGoogle Scholar
  21. 21.
    Stevens CR, Blake DR, Merry P, Revell PA, Levick JR (1991) A comparative study by morphometry of the microvasculature in normal and rheumatoid synovium. Arthritis Rheum 34: 1508–1513PubMedGoogle Scholar
  22. 22.
    Orlandi C, Dunn CJ, Cutshaw LG (1988) Evaluation of angiogenesis in chronic inflammation by laser-Doppler flowmetry. Clin Sci (Lond) 74: 119–121Google Scholar
  23. 23.
    Clavel G, Marchiol-Founigault C, Renault G, Boissier MC, Fradelizi D, Bessis N (2008) Ultra-sound and Doppler micro-imaging in model of rheumatoid arthritis in mice. Ann Rheum Dis epub ahead of printGoogle Scholar
  24. 24.
    Hu DE, Hiley CR, Smither RL, Gresham GA, Fan TP (1995) Correlation of 133Xe clearance, blood flow and histology in the rat sponge model for angiogenesis. Further studies with angiogenic modifiers. Lab Invest 72: 601–610PubMedGoogle Scholar
  25. 25.
    Andrade SP, Machado RD, Teixeira AS, Belo AV, Tarso AM, Beraldo WT (1997) Sponge-induced angiogenesis in mice and the pharmacological reactivity of the neovasculature quantitated by a fluorimetric method. Microvasc Res 54: 253–261PubMedGoogle Scholar
  26. 26.
    Colville-Nash PR, Alam CA, Appleton I, Brown JR, Seed MP, Willoughby DA (1995) The pharmacological modulation of angiogenesis in chronic granulomatous inflammation. J Pharmacol Exp Ther 274: 1463–1472PubMedGoogle Scholar
  27. 27.
    Kimura M, Amemiya K, Yamada T, Suzuki J (1986) Quantitative method for measuring adjuvant-induced granuloma angiogenesis in insulin-treated diabetic mice. J Pharmacobiodyn 9: 442–446PubMedGoogle Scholar
  28. 28.
    Chidlow JH Jr, Langston W, Greer JJ, Ostanin D, Abdelbaqi M, Houghton J, Senthikumar, A, Shukla D, Mazar AP, Grisham MB et al (2006) Differential angiogenic regulation of experimental colitis. Am J Pathol 169: 2014–2030PubMedGoogle Scholar
  29. 29.
    Weidner N (1995) Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 36: 169–180PubMedGoogle Scholar
  30. 30.
    Vermeulen PB, Gasparini G, Fox SB, Colpaert C, Marson LP, Gion M, Belien JA, de Waal RM, Van Marck E, Magnani E et al. (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 38: 1564–1579PubMedGoogle Scholar
  31. 31.
    De Young, Wick MR, Fitzgibbon JF, Sirgi KE, Swanson PE (1993) CD31: An immunospecific marker for endothelial differentiation in human neoplasms. Appl Immunohistochem 1: 97–100Google Scholar
  32. 32.
    Bernardo A, Ball C, Nolasco L, Moake JF, Dong JF (2004) Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood 104: 100–106PubMedGoogle Scholar
  33. 33.
    Matsushita K, Yamakuchi M, Morrell CN, Ozaki M, O—Rourke B, Irani K, Lowenstein CJ (2005) Vascular endothelial growth factor regulation of Weibel-Palade-body exocytosis. Blood 105: 207–214PubMedGoogle Scholar
  34. 34.
    Zhou Z, Christofidou-Solomidou M, Garlanda C, DeLisser HM (1999) Antibody against murine PECAM-1 inhibits tumor angiogenesis in mice. Angiogenesis 3: 181–188PubMedGoogle Scholar
  35. 35.
    DeLisser HM, Christofidou-Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS, Kerr JS, Garlanda C, Merwin JR, Madri JA, et al (1997) Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 151: 671–677PubMedGoogle Scholar
  36. 36.
    Matsumura T, Wolff K, Petzelbauer P (1997) Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. J Immunol 158: 3408–3416PubMedGoogle Scholar
  37. 37.
    Newman PJ, Newman DK (2003) Signal transduction pathways mediated by PECAM-1: New roles for an old molecule in platelet and vascular cell biology. Arterioscler Thromb Vasc Biol 23: 953–964PubMedGoogle Scholar
  38. 38.
    Ilan N, Madri JA (2003) PECAM-1: Old friend, new partners. Curr Opin Cell Biol 15: 515–524PubMedGoogle Scholar
  39. 39.
    Lutzky VP, Carnevale RP, Alvarez MJ, Maffia PC, Zittermann SI, Podhajcer OL, Issekutz AC, Chuluyan HE (2006) Platelet-endothelial cell adhesion molecule-1 (CD31) recycles and induces cell growth inhibition on human tumor cell lines. J Cell Biochem 98: 1334–1350PubMedGoogle Scholar
  40. 40.
    Romer LH, McLean NV, Yan HC, Daise M, Sun J, DeLisser HM (1995) IFN-gamma and TNF-alpha induce redistribution of PECAM-1 (CD31) on human endothelial cells. J Immunol 154: 6582–6592PubMedGoogle Scholar
  41. 41.
    Rival Y, Del Maschio A, Rabiet MJ, Dejana E, Duperray A (1996) Inhibition of platelet endothelial cell adhesion molecule-1 synthesis and leukocyte transmigration in endothelial cells by the combined action of TNF-alpha and IFN-gamma. J Immunol 157: 1233–1241PubMedGoogle Scholar
  42. 42.
    Murdoch C, Tazzyman S, Webster S, Lewis CE (2007) Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol 178: 7405–7411PubMedGoogle Scholar
  43. 43.
    Cotsarelis G (2006) Epithelial stem cells: A folliculocentric view. J Invest Dermatol 126: 1459–1468PubMedGoogle Scholar
  44. 44.
    Satomaa T, Renkonen O, Helin J, Kirveskari J, Makitie A, Renkonen R (2002) O-Glycans on human high endothelial CD34 putatively participating in L-selectin recognition. Blood 99: 2609–2611PubMedGoogle Scholar
  45. 45.
    Levin EG, Santell L, Osborn KG (1997) The expression of endothelial tissue plasminogen activator in vivo: A function defined by vessel size and anatomic location. J Cell Sci 110: 139–148PubMedGoogle Scholar
  46. 46.
    Johnson CM, Fass DN (1983) Porcine cardiac valvular endothelial cells in culture. A relative deficiency of fibronectin synthesis in vitro. Lab Invest 49: 589–598PubMedGoogle Scholar
  47. 47.
    Pearson JD, Carleton JS, Hutchings A (1983) Prostacyclin release stimulated by thrombin or bradykinin in porcine endothelial cells cultured from aorta and umbilical vein. Thromb Res 29: 115–124PubMedGoogle Scholar
  48. 48.
    Muller AM, Cronen C, Muller KM, Kirkpatrick CJ (2002) Heterogeneous expression of cell adhesion molecules by endothelial cells in ARDS. J Pathol 198: 270–275PubMedGoogle Scholar
  49. 49.
    Pusztaszeri MP, Seelentag W, Bosman FT (2006) Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem 54: 385–395PubMedGoogle Scholar
  50. 50.
    Muller AM, Hermanns MI, Skrzynski C, Nesslinger M, Muller KM, Kirkpatrick CJ (2002) Expression of the endothelial markers PECAM-1, vWf, and CD34 in vivo and in vitro. Exp Mol Pathol 72: 221–229PubMedGoogle Scholar
  51. 51.
    Kawanami O, Jin E, Ghazizadeh M, Fujiwara M, Jiang L, Nagashima M, Shimizu H, Takemura T, Ohaki Y, Arai S et al (2000) Heterogeneous distribution of thrombomodulin and von Willebrand factor in endothelial cells in the human pulmonary microvessels. J Nippon Med Sch 67: 118–125PubMedGoogle Scholar
  52. 52.
    Yamamoto K, de Waard V, Fearns C, Loskutoff DJ (1998) Tissue distribution and regulation of murine von Willebrand factor gene expression in vivo. Blood 92: 2791–2801PubMedGoogle Scholar
  53. 53.
    Aird WC, Edelberg JM, Weiler-Guettler H, Simmons WW, Smith TW, Rosenberg RD (1997) Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol 138: 1117–1124PubMedGoogle Scholar
  54. 54.
    Rand JH, Patel ND, Schwartz E, Zhou SL, Potter BJ (1991) 150-kD von Willebrand factor binding protein extracted from human vascular subendothelium is type VI collagen. J Clin Invest 88: 253–259PubMedGoogle Scholar
  55. 55.
    McKenney JK, Weiss SW, Folpe AL (2001) CD31 expression in intratumoral macrophages: A potential diagnostic pitfall. Am J Surg Pathol 25: 1167–1173PubMedGoogle Scholar
  56. 56.
    Suffredini AF, Harpel PC, Parrillo JE (1989) Promotion and subsequent inhibition of plasminogen activation after administration of intravenous endotoxin to normal subjects. N Engl J Med 320: 1165–1172PubMedGoogle Scholar
  57. 57.
    Borchiellini A, Fijnvandraat K, ten Cate JW, Pajkrt D, van Deventer SJ, Pasterkamp G, Meijer-Huizinga F, Zwart-Huinink L, Voorberg J, van Mourik JA (1996) Quantitative analysis of von Willebrand factor propeptide release in vivo: Effect of experimental endotoxemia and administration of 1-deamino-8-d-arginine vasopressin in humans. Blood 88: 2951–2958PubMedGoogle Scholar
  58. 58.
    van Deventer SJ, Buller HR, ten Cate JW, Aarden LA, Hack CE, Sturk A (1990) Experimental endotoxemia in humans: Analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 76: 2520–2526PubMedGoogle Scholar
  59. 59.
    Schorer AE, Moldow CF, Rick ME (1987) Interleukin 1 or endotoxin increases the release of von Willebrand factor from human endothelial cells. Br J Haematol 67: 193–197PubMedGoogle Scholar
  60. 60.
    Niemir ZI, Kubiak A, Olejniczak P, Nowak A, Czekalski S (2004) Can von Willebrand factor, platelet-endothelial cell adhesion molecule-1 and thrombomodulin be used as alternative markers of endothelial cell injury in human glomerulonephritis? Ann Acad Med Bialostocensis 49: 213–218Google Scholar
  61. 61.
    Niemir ZI, Stein H, Dworacki G, Mundel P, Koehl N, Koch B, Autschbach F, Andrassy K, Ritz E, Waldherr R et al (1997) Podocytes are the major source of IL-1 alpha and IL-1 beta in human glomerulonephritides. Kidney Int 52: 393–403PubMedGoogle Scholar
  62. 62.
    Wada Y, Morioka T, Oyanagi-Tanaka Y, Yao J, Suzuki Y, Gejyo F, Arakawa M, Oite T (2002) Impairment of vascular regeneration precedes progressive glomerulosclerosis in anti-Thy 1 glomerulonephritis. Kidney Int 61: 432–443PubMedGoogle Scholar
  63. 63.
    Kaneko Y, Shiozawa S, Hora K, Nakazawa K (2003) Glomerulosclerosis develops in Thy-1 nephritis under persistent accumulation of macrophages. Pathol Int 53: 507–517PubMedGoogle Scholar
  64. 64.
    Wang CR, Chen SY, Wu CL, Liu MF, Jin YT, Chao L, Chao J (2005) Prophylactic adenovirus-mediated human kallistatin gene therapy suppresses rat arthritis by inhibiting angiogenesis and inflammation. Arthritis Rheum 52: 1319–1324PubMedGoogle Scholar
  65. 65.
    Tsai CY, Shiau AL, Chen SY, Chen YH, Cheng PC, Chang MY, Chen DH, Chou CH, Wang CR, Wu CL (2007) Amelioration of collagen-induced arthritis in rats by nanogold. Arthritis Rheum 56: 544–554PubMedGoogle Scholar
  66. 66.
    Kim JM, Ho SH, Park EJ, Hahn W, Cho H, Jeong JG, Lee YW, Kim S (2002) Angiostatin gene transfer as an effective treatment strategy in murine collagen-induced arthritis. Arthritis Rheum 46: 793–801PubMedGoogle Scholar
  67. 67.
    Haas CS, Amin MA, Allen BB, Ruth JH, Haines GK 3rd, Woods JM, Koch AE (2006) Inhibition of angiogenesis by interleukin-4 gene therapy in rat adjuvant-induced arthritis. Arthritis Rheum 54: 2402–2414PubMedGoogle Scholar
  68. 68.
    Devesa I, Ferrandiz ML, Guillen I, Cerda JM, Alcaraz MJ (2005) Potential role of heme oxygenase-1 in the progression of rat adjuvant arthritis. Lab Invest 85: 34–44PubMedGoogle Scholar
  69. 69.
    Rico MC, Castaneda JL, Manns JM, Uknis AB, Sainz IM, Safadi FF, Popoff SN, Dela Cadena RA (2007) Amelioration of inflammation, angiogenesis and CTGF expression in an arthritis model by a TSP1-derived peptide treatment. J Cell Physiol 211: 504–512PubMedGoogle Scholar
  70. 70.
    Middleton J, Americh L, Gayon R, Julien D, Mansat M, Mansat P, Anract P, Cantagrel A, Cattan P, Reimund JM et al (2005) A comparative study of endothelial cell markers expressed in chronically inflamed human tissues: MECA-79, Duffy antigen receptor for chemokines, von Willebrand factor, CD31, CD34, CD105 and CD146. J Pathol 206: 260–268PubMedGoogle Scholar
  71. 71.
    Danese S, Sans M, de la Motte C, Graziani C, West G, Phillips MH, Pola R, Rutella S, Willis J, Gasbarrini A et al (2006) Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterology 130: 2060–2073PubMedGoogle Scholar
  72. 72.
    Brittan M, Chance V, Elia G, Poulsom R, Alison MR, MacDonald TT, Wright NA (2005) A regenerative role for bone marrow following experimental colitis: Contribution to neovasculogenesis and myofibroblasts. Gastroenterology 128: 1984–1995PubMedGoogle Scholar
  73. 73.
    Porter GA, Palade GE, Milici AJ (1990) Differential binding of the lectins Griffonia simplicifolia and Lycopersicon esculentum to microvascular endothelium: Organ-specific localization and partial glycoprotein characterization. Eur J Cell Biol 51: 85–95PubMedGoogle Scholar
  74. 74.
    Laitinen L (1987) Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem J 19: 225–234PubMedGoogle Scholar
  75. 75.
    Tempel W, Tschampel S, Woods RJ (2002) The xenograft antigen bound to Griffonia simplicifolia lectin 1-B(4). X-ray crystal structure of the complex and molecular dynamics characterization of the binding site. J Biol Chem 277: 6615–6621PubMedGoogle Scholar
  76. 76.
    Colville-Nash P, Seed MP, Willoughby DA (1992) Angiogenesis during the development of chronic granulomatous tissue as assessed by vascular casting in vivo. Br J Pharmacol 107: 259PGoogle Scholar
  77. 77.
    Renzoni EA, Walsh DA, Salmon M, Wells AU, Sestini P, Nicholson AG, Veeraraghavan S, Bishop AE, Romanska HM, Pantelidis P et al (2003) Interstitial vascularity in fibrosing alveolitis. Am J Respir Crit Care Med 167: 438–443PubMedGoogle Scholar
  78. 78.
    Etherington PJ, Winlove P, Taylor P, Paleolog E, Miotla JM (2002) VEGF release is associated with reduced oxygen tensions in experimental inflammatory arthritis. Clin Exp Rheumatol 20: 799–805PubMedGoogle Scholar
  79. 79.
    Walsh DA, Bonnet CS, Turner EL, Wilson D, Situ M, McWilliams DF (2007) Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis. Osteoarthritis Cartilage 15: 743–751PubMedGoogle Scholar
  80. 80.
    Dunn CJ, Gibbons AJ, Miller SK (1989) Development of a delayed-type hypersensitivity granuloma model in the mouse for the study of chronic immune-mediated inflammatory disease. Agents Actions 27: 365–368PubMedGoogle Scholar
  81. 81.
    Terslev L, Von der Recke P, Torp-Pedersen S, Koenig MJ, Bliddal H (2008) Diagnostic sensitivity and specificity of Doppler ultrasound in rheumatoid arthritis. J Rheumatol 35: 49–53PubMedGoogle Scholar
  82. 82.
    Torp-Pedersen ST, Terslev L (2008) Settings and artefacts relevant in colour/power Doppler ultrasound in rheumatology. Ann Rheum Dis 67: 143–149PubMedGoogle Scholar
  83. 83.
    Strunk J, Heinemann E, Neeck G, Schmidt KL, Lange U (2004) A new approach to studying angiogenesis in rheumatoid arthritis by means of power Doppler ultrasonography and measurement of serum vascular endothelial growth factor. Rheumatology (Oxford) 43: 1480–1483Google Scholar
  84. 84.
    Strunk J, Lange U (2004) Three-dimensional power Doppler sonographic visualization of synovial angiogenesis in rheumatoid arthritis. J Rheumatol 31: 1004–1006PubMedGoogle Scholar
  85. 85.
    Lage AP, Andrade SP (2000) Assessment of angiogenesis and tumor growth in conscious mice by a fluorimetric method. Microvasc Res 59: 278–285PubMedGoogle Scholar
  86. 86.
    Hu DE, Fan TP (1993) [Leu8]des-Arg9-bradykinin inhibits the angiogenic effect of bradykinin and interleukin-1 in rats. Br J Pharmacol 109: 14–17PubMedGoogle Scholar
  87. 87.
    Dick C, Dick PH, Nuki G, Whaley K, Boyle JA, Shenkin A, Downie WW, Buchanan WW (1969) Effect of anti-inflammatory drug therapy on clearance of 133-Xe from knee joints of patients with rheumatoid arthritis. Br Med J 3: 278–280PubMedGoogle Scholar
  88. 88.
    Andrade SP, Bakhle YS, Hart I, Piper PJ (1992) Effects of tumour cells on angiogenesis and vasoconstrictor responses in sponge implants in mice. Br J Cancer 66: 821–826PubMedGoogle Scholar
  89. 89.
    Andrade SP, Beraldo WT (1998) Pharmacological reactivity of neoplastic and non-neoplastic associated neovasculature to vasoconstrictors. Int J Exp Pathol 79: 425–432PubMedGoogle Scholar
  90. 90.
    Colville-Nash PR, Seed MP, Willoughby DA (1992) Antirheumatic drugs and the development of vasculature in murine chronic granulomatous air pouches. Br J Pharmacol 107: 423PGoogle Scholar
  91. 91.
    Andrade SP, Vieira LB, Bakhle YS, Piper PJ (1992) Effects of platelet activating factor (PAF) and other vasoconstrictors on a model of angiogenesis in the mouse. Int J Exp Pathol 73: 503–513PubMedGoogle Scholar
  92. 92.
    Kimura MS, Suzuki J, Amemiya K (1985) Mouse granuloma pouch induced by Freund’s complete adjuvant with croton oil. J Pharmacobiodyn 8: 393–400PubMedGoogle Scholar
  93. 93.
    De Brito FB, Moore AR, Holmes MJ, Willoughby DA (1987) Cartilage damage by a granulomatous reaction in a murine species. Br J Exp Pathol 68: 675–686PubMedGoogle Scholar
  94. 94.
    Hase S, Nakazawa S, Tsukamoto Y, Segawa K (1989) Effects of prednisolone and human epidermal growth factor on angiogenesis in granulation tissue of gastric ulcer induced by acetic acid. Digestion 42: 135–142PubMedGoogle Scholar
  95. 95.
    Lamparter S, Slight SH, Weber KT (2002) Doxycycline and tissue repair in rats. J Lab Clin Med 139: 295–302PubMedGoogle Scholar
  96. 96.
    Ghosh AK, Hirasawa N, Niki H, Ohuchi K (2000) Cyclooxygenase-2-mediated angiogenesis in carrageenin-induced granulation tissue in rats. J Pharmacol Exp Ther 295: 802–809PubMedGoogle Scholar
  97. 97.
    McDougall JJ, Bray RC (1998) Vascular volume determination of articular tissues in normal and anterior cruciate ligament-deficient rabbit knees. Anat Rec 251: 207–213PubMedGoogle Scholar
  98. 98.
    Brown JR, Seed MP, Willoughby DA (2002) Relationship between apoptosis, angiogenesis and colon-26 tumour growth after oral NSAID-treatment. Adv Exp Med Biol 507: 409–414PubMedGoogle Scholar
  99. 99.
    Stevens CR, Williams RB, Farrell AJ, Blake DR (1991) Hypoxia and inflammatory synovitis: Observations and speculation. Ann Rheum Dis 50: 124–132PubMedGoogle Scholar
  100. 100.
    Folkman J, Langer R, Linhardt RJ, Haudenschild C, Taylor S (1983) Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221: 719–725PubMedGoogle Scholar
  101. 101.
    Crum R, Szabo S, Folkman J (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230: 1375–1378PubMedGoogle Scholar
  102. 102.
    Yamamoto T, Terada N, Nishizawa Y, Petrow V (1994) Angiostatic activities of medroxyprogesterone acetate and its analogues. Int J Cancer 56: 393–399PubMedGoogle Scholar
  103. 103.
    Chander CL, Colville-Nash PR, Moore AR, Howat DW, Desa FM, Willoughby DA (1989) The effects of heparin and cortisone on an experimental model of pannus. Int J Tissue React 11: 113–116PubMedGoogle Scholar
  104. 104.
    Hori Y, Hu DE, Yasui K, Smither RL, Gresham GA, Fan TP (1996) Differential effects of angiostatic steroids and dexamethasone on angiogenesis and cytokine levels in rat sponge implants. Br J Pharmacol 118: 1584–1591PubMedGoogle Scholar
  105. 105.
    Colville-Nash PR, el-Ghazaly M, Willoughby DA (1993) The use of angiostatic steroids to inhibit cartilage destruction in an in vivo model of granuloma-mediated cartilage degradation. Agents Actions 38: 126–134PubMedGoogle Scholar
  106. 106.
    Da Silva JA, Larbre JP, Seed MP, Cutolo M, Villaggio B, Scott DL, Willoughby DA (1994) Sex differences in inflammation induced cartilage damage in rodents. The influence of sex steroids. J Rheumatol 21: 330–337PubMedGoogle Scholar
  107. 107.
    Penn JS, Rajaratnam VS, Collier RJ, Clark AF (2001) The effect of an angiostatic steroid on neovascularization in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 42: 283–290PubMedGoogle Scholar
  108. 108.
    Clark AF (2007) Preclinical efficacy of anecortave acetate. Surv Ophthalmol 52 (Suppl 1): S41–48PubMedGoogle Scholar
  109. 109.
    Clark AF (2007) Mechanism of action of the angiostatic cortisene anecortave acetate. Surv Ophthalmol 52 (Suppl 1): S26–34PubMedGoogle Scholar
  110. 110.
    Fan TP, Hu DE, Guard S, Gresham GA, Watling KJ (1993) Stimulation of angiogenesis by substance P and interleukin-1 in the rat and its inhibition by NK1 or interleukin-1 receptor antagonists. Br J Pharmacol 110: 43–49PubMedGoogle Scholar
  111. 111.
    Hu DE, Hiley CR, Fan TP (1996) Comparative studies of the angiogenic activity of vasoactive intestinal peptide, endothelins-1 and-3 and angiotensin II in a rat sponge model. Br J Pharmacol 117: 545–551PubMedGoogle Scholar
  112. 112.
    Hu DE, Fan TP (1995) Suppression of VEGF-induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin A. Br J Pharmacol 114: 262–268PubMedGoogle Scholar
  113. 113.
    Barcelos LS, Talvani A, Teixeira AS, Cassali GD, Andrade SP, Teixeira MM (2004) Production and in vivo effects of chemokines CXCL1-3/KC and CCL2/JE in a model of inflammatory angiogenesis in mice. Inflamm Res 53: 576–584PubMedGoogle Scholar
  114. 114.
    Kim CD, Kim HH, Kim YK, Kwak YK, Kim S, Yoo S, Hong KW (2001) Antiangiogenic effect of KR 31372 in rat sponge implant model. J Pharmacol Exp Ther 296: 1085–1090PubMedGoogle Scholar
  115. 115.
    Hu DE, Fan TP (1995) Protein kinase C inhibitor calphostin C prevents cytokine-induced angiogenesis in the rat. Inflammation 19: 39–54PubMedGoogle Scholar
  116. 116.
    Hu DE, Hori Y, Fan TP (1993) Interleukin-8 stimulates angiogenesis in rats. Inflammation 17: 135–143PubMedGoogle Scholar
  117. 117.
    Nor JE, Mitra RS, Sutorik MM, Mooney DJ, Castle VP, Polverini PJ (2000) Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 37: 209–218PubMedGoogle Scholar
  118. 118.
    Or R, Feferman R, Shoshan S (1998) Thalidomide reduces vascular density in granulation tissue of subcutaneously implanted polyvinyl alcohol sponges in guinea pigs. Exp Hematol 26: 217–221PubMedGoogle Scholar
  119. 119.
    Belo AV, Ferreira MA, Bosco AA, Machado RD, Andrade SP (2001) Differential effects of thalidomide on angiogenesis and tumor growth in mice. Inflammation 25: 91–96PubMedGoogle Scholar
  120. 120.
    Fishman SJ, Feins NR, D’Amato RJ, Folkman J (1999) Long-term remission of Crohn’s disease treated with thalidomide: A seminal case report. Angiogenesis 3: 201–204PubMedGoogle Scholar
  121. 121.
    Klausner JD, Freedman VH, Kaplan G (1996) thalidomide as an anti-TNF-alpha inhibitor: Implications for clinical use. Clin Immunol Immunopathol 81: 219–223PubMedGoogle Scholar
  122. 122.
    Barcelos LS, Talvani A, Teixeira AS, Vieira LQ, Cassali GD, Andrade SP, Teixeira MM (2005) Impaired inflammatory angiogenesis, but not leukocyte influx, in mice lacking TNFR1. J Leukoc Biol 78: 352–358PubMedGoogle Scholar
  123. 123.
    Munzenmaier DH, Greene AS (1996) Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension 27: 760–765PubMedGoogle Scholar
  124. 124.
    Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T (1995) The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95: 651–657PubMedGoogle Scholar
  125. 125.
    Andrade SP, Cardoso CC, Machado RD, Beraldo WT (1996) Angiotensin-II-induced angiogenesis in sponge implants in mice. Int J Microcirc Clin Exp 16: 302–307PubMedGoogle Scholar
  126. 126.
    Machado RD, Santos RA, Andrade SP (2000) Opposing actions of angiotensins on angiogenesis. Life Sci 66: 67–76PubMedGoogle Scholar
  127. 127.
    Walsh DA, Hu DE, Wharton J, Catravas JD, Blake DR, Fan TP (1997) Sequential development of angiotensin receptors and angiotensin I converting enzyme during angiogenesis in the rat subcutaneous sponge granuloma. Br J Pharmacol 120: 1302–1311PubMedGoogle Scholar
  128. 128.
    Walsh DA, Catravas J, Wharton J (2000) Angiotensin converting enzyme in human synovium: Increased stromal [125I]351A binding in rheumatoid arthritis. Ann Rheum Dis 59: 125–131PubMedGoogle Scholar
  129. 129.
    Walsh DA, Suzuki T, Knock GA, Blake DR, Polak JM, Wharton J (1994) AT1 receptor characteristics of angiotensin analogue binding in human synovium. Br J Pharmacol 112: 435–442PubMedGoogle Scholar
  130. 130.
    Machado RD, Santos RA, Andrade SP (2001) Mechanisms of angiotensin-(1–7)-induced inhibition of angiogenesis. Am J Physiol Regul Integr Comp Physiol 280: R994–R1000PubMedGoogle Scholar
  131. 131.
    Muramatsu M, Katada J, Hattori M, Hayashi I, Majima M (2000) Chymase mediates mast cell-induced angiogenesis in hamster sponge granulomas. Eur J Pharmacol 402: 181–191PubMedGoogle Scholar
  132. 132.
    Muramatsu M, Katada J, Hayashi I, Majima M (2000) Chymase as a proangiogenic factor. A possible involvement of chymase-angiotensin-dependent pathway in the hamster sponge angiogenesis model. J Biol Chem 275: 5545–5552PubMedGoogle Scholar
  133. 133.
    Amano H, Ando K, Minamida S, Hayashi I, Ogino M, Yamashina S, Yoshimura H, Majima M (2001) Adenylate cyclase/protein kinase A signaling pathway enhances angiogenesis through induction of vascular endothelial growth factor in vivo. Jpn J Pharmacol 87: 181–188PubMedGoogle Scholar
  134. 134.
    Hu DE, Fan TPD (1994) Suramin inhibits the angiogenic activity of vascular endothelial growth factor. Br J Pharmacol 112(SS): U78Google Scholar
  135. 135.
    Jia H, Bagherzadeh A, Bicknell R, Duchen MR, Liu D, Zachary I (2004) Vascular endothelial growth factor (VEGF)-D and VEGF-A differentially regulate KDR-mediated signaling and biological function in vascular endothelial cells. J Biol Chem 279: 36148–36157PubMedGoogle Scholar
  136. 136.
    Beebe JS, Jani JP, Knauth E, Goodwin P, Higdon C, Rossi AM, Emerson E, Finkelstein M, Floyd E, Harriman S et al (2003) Pharmacological characterization of CP-547,632, a novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for cancer therapy. Cancer Res 63: 7301–7309PubMedGoogle Scholar
  137. 137.
    BenEzra DM, G (1996) Antibodies to IL-1 TNF alpha but not to bFGF or VEGF inhibit angiogenesis. Investig Ophthalmol Vis Sci 37: 4664Google Scholar
  138. 138.
    Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329: 630–632PubMedGoogle Scholar
  139. 139.
    Fajardo LF, Kwan HH, Kowalski J, Prionas SD, Allison AC (1992) Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 140: 539–544PubMedGoogle Scholar
  140. 140.
    Hu DE, Hori Y, Presta M, Gresham GA, Fan TP (1994) Inhibition of angiogenesis in rats by IL-1 receptor antagonist and selected cytokine antibodies. Inflammation 18: 45–58PubMedGoogle Scholar
  141. 141.
    Moghaddam A, Zhang HT, Fan TP, Hu DE, Lees VC, Turley H, Fox SB, Gatter KC, Harris AL, Bicknell R (1995) Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci USA 92: 998–1002PubMedGoogle Scholar
  142. 142.
    Majima M, Isono M, Ikeda Y, Hayashi I, Hatanaka K, Harada Y, Katsumata O, Yamashina S, Katori M, Yamamoto S (1997) Significant roles of inducible cyclooxygenase (COX)-2 in angiogenesis in rat sponge implants. Jpn J Pharmacol 75: 105–114PubMedGoogle Scholar
  143. 143.
    Majima M, Hayashi I, Muramatsu M, Katada J, Yamashina S, Katori M (2000) Cyclo-oxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Br J Pharmacol 130: 641–649PubMedGoogle Scholar
  144. 144.
    Rainsford KD (2006) Current status of the therapeutic uses and actions of the preferential cyclo-oxygenase-2 NSAID, nimesulide. Inflammopharmacology 14: 120–137PubMedGoogle Scholar
  145. 145.
    Amano H, Haysahi I, Yoshida S, Yoshimura H, Majima M (2002) Cyclooxygenase-2 and adenylate cyclase/protein kinase A signaling pathway enhances angiogenesis through induction of vascular endothelial growth factor in rat sponge implants. Hum Cell 15: 13–24PubMedGoogle Scholar
  146. 146.
    Rao R, Redha R, Macias-Perez I, Su Y, Hao C, Zent R, Breyer MD, Pozzi A (2007) Prostaglandin E2-Ep4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. J Biol Chem 282: 16959–16968PubMedGoogle Scholar
  147. 147.
    Amano H, Hayashi I, Endo H, Kitasato H, Yamashina S, Maruyama T, Kobayashi M, Satoh K, Narita M, Sugimoto Y et al (2003) Host prostaglandin E(2)-EP3 signaling regulates tumor-associated angiogenesis and tumor growth. J Exp Med 197: 221–232PubMedGoogle Scholar
  148. 148.
    Mapp PI, Blake DR (1995) Neuropeptides and the synovium. Academic Press, New YorkGoogle Scholar
  149. 149.
    Mapp PI (1995) Innervation of the synovium. Ann Rheum Dis, 54: 398–403PubMedGoogle Scholar
  150. 150.
    Fassbender HG, Gay S (1988) Synovial processes in rheumatoid arthritis. Scand J Rheumatol Suppl 76: 1–7PubMedGoogle Scholar
  151. 151.
    Ziche M, Morbidelli L, Masini E, amerini S, Granger HJ, Maggi CA, Geppetti P, Ledda F (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94: 2036–2044PubMedGoogle Scholar
  152. 152.
    Walsh DA, Hu DE, Mapp PI, Polak JM, Blake DR, Fan TP (1996) Innervation and neurokinin receptors during angiogenesis in the rat sponge granuloma. Histochem J 28: 759–769PubMedGoogle Scholar
  153. 153.
    De Filippis D, Russo A, De Stefano D, Maiuri MC, Esposito G, Cinelli MP, Pietropaolo C, Carnuccio R, Russo G, Iuvone T (2007) Local administration of WIN 55,212-2 reduces chronic granuloma-associated angiogenesis in rat by inhibiting NF-kappaB activation. J Mol Med 85: 635–645PubMedGoogle Scholar
  154. 154.
    Hayashi I, Amano H, Yoshida S, Kamata K, Kamata M, Inukai M, Fujita T, Kumagai Y, Furudate S, Majima M (2002) Suppressed angiogenesis in kininogen-deficiencies. Lab Invest 82: 871–880PubMedGoogle Scholar
  155. 155.
    Alam CA (2003) Quantitative analysis of angiogenesis using the murine chronic granulomatous air pouch. Methods Mol Biol 225: 191–197PubMedGoogle Scholar
  156. 156.
    Jackson JR, Seed MP, Kircher CH, Willoughby DA, Winkler JD (1997) The codependence of angiogenesis and chronic inflammation. FASEB J 11: 457–465PubMedGoogle Scholar
  157. 157.
    Braddock PS, Hu DE, Fan TP, Stratford IJ, Harris AL, Bicknell R (1994) A structure-activity analysis of antagonism of the growth factor and angiogenic activity of basic fibroblast growth factor by suramin and related polyanions. Br J Cancer 69: 890–898PubMedGoogle Scholar
  158. 158.
    Appleton I, Tomlinson A, Colville-Nash PR, Willoughby DA (1993) Temporal and spatial immunolocalization of cytokines in murine chronic granulomatous tissue. Implications for their role in tissue development and repair processes. Lab Invest 69: 405–414PubMedGoogle Scholar
  159. 159.
    Appleton I, Tomlinson A, Mitchell JA, Willoughby DA (1995) Distribution of cyclooxygenase isoforms in murine chronic granulomatous inflammation. Implications for future anti-inflammatory therapy. J Pathol 176: 413–420PubMedGoogle Scholar
  160. 160.
    Appleton I, Tomlinson A, Willoughby DA (1996) Induction of cyclo-oxygenase and nitric oxide synthase in inflammation. Adv Pharmacol 35: 27–78PubMedGoogle Scholar
  161. 161.
    Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, Willoughby DA (1994) Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci USA 91: 2046–2050PubMedGoogle Scholar
  162. 162.
    Gilroy DW, Tomlinson A, Willoughby DA (1998) Differential effects of inhibition of isoforms of cyclooxygenase (COX-1, COX-2) in chronic inflammation. Inflamm Res 47: 79–85PubMedGoogle Scholar
  163. 163.
    Seed M, Gilroy, D., Paul-Clark M., Tomlinson A., Willoughby D.A. (1999) The role of the inducible enzymes cycloxygenase-2, nitric oxide synthase, and heme oxygenase in inflammation angiogenesis. In: TA Willoughby DA (ed) Inducible enzymes in the inflammatory response. Birkhäuser, Basel, 125–148Google Scholar
  164. 164.
    Devesa I, Alcaraz MJ, Riguera R, Ferrandiz ML (2004) A new pyrazolo pyrimidine derivative inhibitor of cyclooxygenase-2 with anti-angiogenic activity. Eur J Pharmacol 488: 225–230PubMedGoogle Scholar
  165. 165.
    Quintela JM, Peinador C, Gonzalez L, Devesa I, Ferrandiz ML, Alcaraz MJ, Riguera R (2003) 6-Dimethylamino 1H-pyrazolo[3,4-d]pyrimidine derivatives as new inhibitors of inflammatory mediators in intact cells. Bioorg Med Chem 11: 863–868PubMedGoogle Scholar
  166. 166.
    Form DM, Auerbach R (1983) PGE2 and angiogenesis. Proc Soc Exp Biol Med 172: 214–218PubMedGoogle Scholar
  167. 167.
    Phipps RP, Stein SH, Roper RL (1991) A new view of prostaglandin E regulation of the immune response. Immunol Today 12: 349–352PubMedGoogle Scholar
  168. 168.
    Freemantle C, Alam CA, Brown JR, Seed MP, Willoughby DA (1995) The modulation of granulomatous tissue and tumour angiogenesis by diclofenac in combination with hyaluronan (HYAL EX-0001). Int J Tissue React 17: 157–166PubMedGoogle Scholar
  169. 169.
    Seed MP, Brown JR, Freemantle CN, Papworth JL, Colville-Nash PR, Willis D, Somerville KW, Asculai S, Willoughby DA (1997) The inhibition of colon-26 adenocarcinoma development and angiogenesis by topical diclofenac in 2.5% hyaluronan. Cancer Res 57: 1625–1629PubMedGoogle Scholar
  170. 170.
    Seed MP, Freemantle CN, Alam CA, Colville-Nash PR, Brown JR, Papworth JL, Somerville KW, Willoughby DA (1997) Apoptosis induction and inhibition of colon-26 tumour growth and angiogenesis: Findings on COX-1 and COX-2 inhibitors in vitro and in vivo and topical diclofenac in hyaluronan. Adv Exp Med Biol 433: 339–342PubMedGoogle Scholar
  171. 171.
    Araico A, Terencio MC, Alcaraz MJ, Dominguez JN, Leon C, Ferrandiz ML (2006) Phenylsulphonyl urenyl chalcone derivatives as dual inhibitors of cyclo-oxygenase-2 and 5-lipoxygenase. Life Sci 78: 2911–2918PubMedGoogle Scholar
  172. 172.
    Araico A, Terencio MC, Alcaraz MJ, Dominguez JN, Leon C, Ferrandiz ML (2007) Evaluation of the anti-inflammatory and analgesic activity of Me-UCH9, a dual cyclo-oxygenase-2/5-lipoxygenase inhibitor. Life Sci 80: 2108–2117PubMedGoogle Scholar
  173. 173.
    Marshall LA, Hall RH, Winkler JD, Badger A, Bolognese B, Roshak A, Flamberg PL, Sung CM, Chabot-Fletcher M, Adams JL et al (1995) SB 203347, an inhibitor of 14 kDa phospholipase A2, alters human neutrophil arachidonic acid release and metabolism and prolongs survival in murine endotoxin shock. J Pharmacol Exp Ther 274: 1254–1262PubMedGoogle Scholar
  174. 174.
    Yacoubian S, Serhan CN (2007) New endogenous anti-inflammatory and proresolving lipid mediators: Implications for rheumatic diseases. Nat Clin Pract Rheumatol 3: 570–579; quiz 1 p following 589PubMedGoogle Scholar
  175. 175.
    Fierro IM, Kutok JL, Serhan CN (2002) Novel lipid mediator regulators of endothelial cell proliferation and migration: Aspirin-triggered-15R-lipoxin A(4) and lipoxin A(4). J Pharmacol Exp Ther 300: 385–392PubMedGoogle Scholar
  176. 176.
    Beyaert R, Cuenda A, Vanden Berghe W, Plaisance S, Lee JC, Haegeman G, Cohen P, Fiers W (1996) The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J 15: 1914–1923PubMedGoogle Scholar
  177. 177.
    Pouliot M, Baillargeon J, Lee JC, Cleland LG, James MJ (1997) Inhibition of prostaglandin endoperoxide synthase-2 expression in stimulated human monocytes by inhibitors of p38 mitogen-activated protein kinase. J Immunol 158: 4930–4937PubMedGoogle Scholar
  178. 178.
    Jackson JR, Bolognese B, Hillegass L, Kassis S, Adams J, Griswold DE, Winkler JD (1998) Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J Pharmacol Exp Ther 284: 687–692PubMedGoogle Scholar
  179. 179.
    Appleton I, Brown NJ, Willis D, Colville-Nash PR, Alam C, Brown JR, Willoughby DA (1996) The role of vascular endothelial growth factor in a murine chronic granulomatous tissue air pouch model of angiogenesis. J Pathol 180: 90–94PubMedGoogle Scholar
  180. 180.
    Grosios K, Wood J, Esser R, Raychaudhuri A, Dawson J (2004) Angiogenesis inhibition by the novel VEGF receptor tyrosine kinase inhibitor, PTK787/ZK222584, causes significant anti-arthritic effects in models of rheumatoid arthritis. Inflamm Res 53: 133–142PubMedGoogle Scholar
  181. 181.
    Traxler P, Bold G, Buchdunger E, Caravatti G, Furet P, Manley P, O—Reilly T, Wood J, Zimmermann J (2001) Tyrosine kinase inhibitors: From rational design to clinical trials. Med Res Rev 21: 499–512PubMedGoogle Scholar
  182. 182.
    Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O—Reilly T et al (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 60: 2178–2189PubMedGoogle Scholar
  183. 183.
    Strawn LM, McMahon G, App H, Schreck R, Kuchler WR, Longhi MP, Hui TH, Tang C, Levitzki A, Gazit A et al (1996) Flk-1 as a target for tumor growth inhibition. Cancer Res 56: 3540–3545PubMedGoogle Scholar
  184. 184.
    Kaipainen A, Vlaykova T, Hatva E, Bohling T, Jekunen A, Pyrhonen S, Alitalo K (1994) Enhanced expression of the tie receptor tyrosine kinase messenger RNA in the vascular endothelium of metastatic melanomas. Cancer Res 54: 6571–6577PubMedGoogle Scholar
  185. 185.
    Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376: 70–74PubMedGoogle Scholar
  186. 186.
    Seed MP, Colville-Nash PR, Alam C, willoughby DA (1993) Angiogenesis in inflammation: Serine protease inhibition in vivo is angiostatic. International Association of Inflammation Societies, Inflammation ′93, 17Google Scholar
  187. 187.
    Kimura I, Yoshikawa M, Kobayashi S, Sugihara Y, Suzuki M, Oominami H, Murakami T, Matsuda H, Doiphode VV (2001) New triterpenes, myrrhanol A and myrrhanone A, from guggul-gum resins, and their potent anti-inflammatory effect on adjuvant-induced air-pouch granuloma of mice. Bioorg Med Chem Lett 11: 985–989PubMedGoogle Scholar
  188. 188.
    Kobayashi S, Kimura I, Fukuta M, Kontani H, Inaba K, Niwa M, Mita S, Kimura M (1999) Inhibitory effects of tetrandrine and related synthetic compounds on angiogenesis in streptozotocin-diabetic rodents. Biol Pharm Bull 22: 360–365PubMedGoogle Scholar
  189. 189.
    Kobayashi S, Miyamoto T, Kimura I, Kimura M (1995) Inhibitory effect of isoliquiritin, a compound in licorice root, on angiogenesis in vivo and tube formation in vitro. Biol Pharm Bull 18: 1382–1386PubMedGoogle Scholar
  190. 190.
    Kojima S, Inaba K, Kobayashi S, Kimura M (1996) Inhibitory effects of traditional Chinese medicine Shimotsu-to and its included crude fractions on adjuvant-induced chronic inflammation of mice. Biol Pharm Bull 19: 47–52PubMedGoogle Scholar
  191. 191.
    Gonzalez C, Abello P, Cepeda R, Salazar L, Aravena O, Pesce B, Catalan D, Aguillon JC (2007) Inflammation, synovial angiogenesis and chondroid apoptosis in the evolution of type II collagen-induced arthritis. Eur Cytokine Netw 18: 127–135PubMedGoogle Scholar
  192. 192.
    Clavel G, Valvason C, Yamaoka K, Lemeiter D, Laroche L, Boissier MC, Bessis N (2006) Relationship between angiogenesis and inflammation in experimental arthritis. Eur Cytokine Netw 17: 202–210PubMedGoogle Scholar
  193. 193.
    Josefsson E, Tarkowski A (1997) Suppression of type II collagen-induced arthritis by the endogenous estrogen metabolite 2-methoxyestradiol. Arthritis Rheum 40: 154–163PubMedGoogle Scholar
  194. 194.
    Kurosaka D, Yoshida K, Yasuda J, Yasuda C, Noda K, Furuya K, Ukichi T, Kingetsu I, Joh K, Yamaguchi N et al (2007) The effect of endostatin evaluated in an experimental animal model of collagen-induced arthritis. Scand J Rheumatol 36: 434–441PubMedGoogle Scholar
  195. 195.
    Kurosaka D, Yoshida K, Yasuda J, Yokoyama T, Kingetsu I, Yamaguchi N, Joh K, Matsushima M, Saito S, Yamada A (2003) Inhibition of arthritis by systemic administration of endostatin in passive murine collagen induced arthritis. Ann Rheum Dis 62: 677–679PubMedGoogle Scholar
  196. 196.
    Folkman J (1995) Angiogenesis inhibitors generated by tumors. Mol Med 1: 120–122PubMedGoogle Scholar
  197. 197.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27–31PubMedGoogle Scholar
  198. 198.
    Takahashi H, Kato K, Miyake K, Hirai Y, Yoshino S, Shimada T (2005) Adeno-associated virus vector-mediated anti-angiogenic gene therapy for collagen-induced arthritis in mice. Clin Exp Rheumatol 23: 455–461PubMedGoogle Scholar
  199. 199.
    Sumariwalla PF, Cao Y, Wu HL, Feldmann M, Paleolog EM (2003) The angiogenesis inhibitor protease-activated kringles 1–5 reduces the severity of murine collagen-induced arthritis. Arthritis Res Ther 5: R32–39PubMedGoogle Scholar
  200. 200.
    Chen Y, Donnelly E, Kobayashi H, Debusk LM, Lin PC (2005) Gene therapy targeting the Tie2 function ameliorates collagen-induced arthritis and protects against bone destruction. Arthritis Rheum 52: 1585–1594PubMedGoogle Scholar
  201. 201.
    Jones PF (2003) Not just angiogenesis — Wider roles for the angiopoietins. J Pathol 201: 515–527PubMedGoogle Scholar
  202. 202.
    Emmanouilides C, Pegram M, Robinson R, Hecht R, Kabbinavar F, Isacoff W (2004) Anti-VEGF antibody bevacizumab (Avastin) with 5FU/LV as third line treatment for colorectal cancer. Tech Coloproctol 8 (Suppl 1): s50–52Google Scholar
  203. 203.
    Maharaj AS, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC, Matharu KS, Karumanchi SA, D’Amore PA (2008) VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 205: 491–501PubMedGoogle Scholar
  204. 204.
    Kasama T, Shiozawa F, Kobayashi K, Yajima N, Hanyuda M, Takeuchi HT, Mori Y, Negishi M, Ide H, Adachi M (2001) Vascular endothelial growth factor expression by activated synovial leukocytes in rheumatoid arthritis: Critical involvement of the interaction with synovial fibroblasts. Arthritis Rheum 44: 2512–2524PubMedGoogle Scholar
  205. 205.
    Murakami M, Iwai S, Hiratsuka S, Yamauchi M, Nakamura K, Iwakura Y, Shibuya M (2006) Signaling of vascular endothelial growth factor receptor-1 tyrosine kinase promotes rheumatoid arthritis through activation of monocytes/macrophages. Blood 108: 1849–1856PubMedGoogle Scholar
  206. 206.
    Kneilling M, Hultner L, Pichler BJ, Mailhammer R, Morawietz L, Solomon S, Eichner M, Sabatino J, Biedermann T, Krenn V et al (2007) Targeted mast cell silencing protects against joint destruction and angiogenesis in experimental arthritis in mice. Arthritis Rheum 56: 1806–1816PubMedGoogle Scholar
  207. 207.
    Gerlag DM, Borges E, Tak PP, Ellerby HM, Bredesen DE, Pasqualini R, Ruoslahti E, Firestein GS (2001) Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature. Arthritis Res 3: 357–361PubMedGoogle Scholar
  208. 208.
    Danese S, Scaldaferri F, Vetrano S, Stefanelli T, Graziani C, Repici A, Ricci R, Straface G, Sgambato A, Malesci A et al (2007) Critical role of the CD40 CD40-ligand pathway in regulating mucosal inflammation-driven angiogenesis in inflammatory bowel disease. Gut 56: 1248–1256PubMedGoogle Scholar
  209. 209.
    Zak S, Treven J, Nash N, Gutierrez LS (2008) Lack of thrombospondin-1 increases angiogenesis in a model of chronic inflammatory bowel disease. Int J Colorectal Dis 23: 297–304PubMedGoogle Scholar
  210. 210.
    Stoeltzing O, Liu W, Reinmuth N, Fan F, Parry GC, Parikh AA, McCarty MF, Bucana CD, Mazar AP, Ellis LM (2003) Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int J Cancer 104: 496–503PubMedGoogle Scholar
  211. 211.
    Gosain A, Matthies AM, Dovi JV, Barbul A, Gamelli RL, DiPietro LA (2006) Exogenous proangiogenic stimuli cannot prevent physiologic vessel regression. J Surg Res 135: 218–225PubMedGoogle Scholar
  212. 212.
    Zoellner H, Hofler M, Beckmann R, Hufnagl P, Vanyek E, Bielek E, Wojta J, Fabry A, Lockie S, Binder BR (1996) Serum albumin is a specific inhibitor of apoptosis in human endothelial cells. J Cell Sci 109: 2571–2580PubMedGoogle Scholar
  213. 213.
    Alon T, Hemo I, Itin A, Pe'er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1: 1024–1028PubMedGoogle Scholar
  214. 214.
    Wilasrusmee C, Yusupov I, Ondocin P, Bruch D, Kittur S, Wilasrusmee S, Kittur DS (2005) Angiocidal effect of cyclosporin A: A new therapeutic approach for pathogenic angiogenesis. Int Angiol 24: 372–379PubMedGoogle Scholar
  215. 215.
    Alam CA, Seed MP, Willoughby DA (1995) Angiostasis and vascular regression in chronic granulomatous inflammation induced by diclofenac in combination with hyaluronan in mice. J Pharm Pharmacol 47: 407–411PubMedGoogle Scholar
  216. 216.
    Alam CAS, Seed MP, Willoughby DA (1996) Hypothesis: A link between analgesia and angiostasis induced by hyaluronan and diclofenac (HYAL AT-2101) during inflammation in vivo. Monduzzi Editore, BolognaGoogle Scholar
  217. 217.
    Winkler JD, Seed MP (1997) Angiogenesis in inflammatory disease. Inflamm Res 46: 157–158PubMedGoogle Scholar
  218. 218.
    Ben-Av P, Crofford LJ, Wilder RL, Hla T (1995) Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: A potential mechanism for inflammatory angiogenesis. FEBS Lett 372: 83–87PubMedGoogle Scholar
  219. 219.
    Cohen T, Nahari D, Cerem LW, Neufeld G, Levi BZ (1996) Interleukin 6 induces the expression of vascular endothelial growth factor. J Biol Chem 271: 736–741PubMedGoogle Scholar
  220. 220.
    Morbidelli L, Chang CH, Douglas JG, Granger HJ, Ledda F, Ziche M (1996) Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol 270: H411–415PubMedGoogle Scholar
  221. 221.
    Ku DD, Zaleski JK, Liu S, Brock TA (1993) Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am J Physiol 265: H586–592PubMedGoogle Scholar
  222. 222.
    Spisni E, Manica F, Tomasi V (1992) Involvement of prostanoids in the regulation of angiogenesis by polypeptide growth factors. Prostaglandins Leukot Essent Fatty Acids 47: 111–115PubMedGoogle Scholar
  223. 223.
    Farndale RW, Sayers CA, Barrett AJ (1982) A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res 9: 247–248PubMedGoogle Scholar
  224. 224.
    Matsubara T, Ziff M (1987) Inhibition of human endothelial cell proliferation by gold compounds. J Clin Invest 79: 1440–1446PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Chandan Alam
    • 1
  • Paul Colville-Nash
    • 2
  • Michael Seed
    • 3
  1. 1.Bone & Joint Unit, William Harvey Research InstituteBart’s and the London School of Medicine and DentistryLondonUK
  2. 2.South West Thames Institute for Renal ResearchSt. Helier HospitalCarshaltonUK
  3. 3.Centre for Experimental Medicine and Rheumatology, William Harvey Research InstituteBart’s and the London School of Medicine and DentistryLondonUK

Personalised recommendations