Chemokines and cytokines in inflammatory angiogenesis

  • Zoltán Szekanecz
  • Alisa E. Koch
Part of the Progress in Inflammation Research book series (PIR)


The perpetuation of angiogenesis is involved in certain chronic inflammatory conditions such as rheumatoid arthritis (RA). Thus, RA, a prototype of chronic inflammatory disorders, as well as other inflammatory diseases with accelerated neovascularisation may be considered as “angiogenic diseases”. Angiogenesis plays an important role in the pathogenesis of the disease and therapeutic control of angiogenesis may be beneficial for the outcome of inflammation (reviewed in [1, 2, 3, 4, 5, 6]).


Rheumatoid Arthritis Internal Medicine Cancer Research Inflammatory Disease Inflammatory Condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koch AE (1998) Angiogenesis: Implications for rheumatoid arthritis. Arthritis Rheum 41: 951–962PubMedCrossRefGoogle Scholar
  2. 2.
    Szekanecz Z, Koch AE (2004) Vascular endothelium and immune responses: Implications for inflammation and angiogenesis. Rheum Dis Clin North Am 30: 97–114PubMedCrossRefGoogle Scholar
  3. 3.
    Szekanecz Z, Koch AE (2001) Chemokines and angiogenesis. Curr Opin Rheumatol 13: 202–208PubMedCrossRefGoogle Scholar
  4. 4.
    Auerbach W, Auerbach R (1994) Angiogenesis inhibition: A review. Pharmacol Ther 63: 265–311PubMedCrossRefGoogle Scholar
  5. 5.
    Szekanecz Z, Gaspar L, Koch AE (2005) Angiogenesis in rheumatoid arthritis. Front Biosci 10: 1739–1753PubMedCrossRefGoogle Scholar
  6. 6.
    Rudolph EH, Woods JM (2005) Chemokine expression and regulation of angiogenesis in rheumatoid arthritis. Curr Pharm Des 11: 613–631PubMedCrossRefGoogle Scholar
  7. 7.
    Imhof BA, Aurrand-Lions M (2004) Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 4: 432–444PubMedCrossRefGoogle Scholar
  8. 8.
    Szekanecz Z, Strieter RM, Koch AE (1998) Cytokines in rheumatoid arthritis: Potential targets for pharmacological intervention. Drugs Aging 12: 377–390PubMedCrossRefGoogle Scholar
  9. 9.
    Koch AE, Polverini PJ, Leibovich SJ (1986) Stimulation of neovascularization by human rheumatoid synovial tissue macrophages. Arthritis Rheum 29: 471–479PubMedCrossRefGoogle Scholar
  10. 10.
    Walsh DA (1999) Angiogenesis and arthritis. Rheumatology (Oxford) 38: 103–112CrossRefGoogle Scholar
  11. 11.
    Paleolog EM, Fava RA (1998) Angiogenesis in rheumatoid arthritis: Implications for future therapeutic strategies. Springer Semin Immunopathol 20: 73–94PubMedCrossRefGoogle Scholar
  12. 12.
    Szekanecz Z, Kim J, Koch AE (2002) Chemokines and chemokine receptors in rheumatoid arthritis. Semin Immunol 399: 1–7Google Scholar
  13. 13.
    Taub DD (1996) C-C chemokines — An overview. In: AE Koch, RM Strieter (eds): Chemokines in Disease. RG Landes Company, Austin, 27–54Google Scholar
  14. 14.
    Walz A, Kunkel SL, Strieter RM (1996) C-X-C chemokines — An overview. In: AE Koch, RM Strieter (eds): Chemokines in Disease, RG Landes Company, Austin, 1–25Google Scholar
  15. 15.
    Zlotnik A, Yoshie O (2000) Chemokines: A new classification system and their role in immunity. Immunity 12: 121–127PubMedCrossRefGoogle Scholar
  16. 16.
    Moser B, Loetscher P (2001) Lymphocyte traffic control by chemokines. Nat Immunol 2: 123–128PubMedCrossRefGoogle Scholar
  17. 17.
    Kunkel EJ, Butcher EC (2002) Chemokines and the tissue-specific migration of lymphocytes. Immunity 16: 1–4PubMedCrossRefGoogle Scholar
  18. 18.
    Buckley CD, Amft N, Bradfield PF, Pilling D, Ross E, Arenzana-Seisdedos F, Amara A, Curnow SJ, Lord RM, Scheel-Toellner D, Salmon M (2000) Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J Immunol 165: 3423–3429PubMedGoogle Scholar
  19. 19.
    Nanki T, Hayashida K, El-Gabalawy HS, Suson S, Shi K, Girschick HJ, Yavuz S, Lipsky PE (2000) Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T-cell accumulation in rheumatoid arthritis synovium. J Immunol 165: 6590–6598PubMedGoogle Scholar
  20. 20.
    Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D et al. (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270: 27348–27357PubMedCrossRefGoogle Scholar
  21. 21.
    Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, Oppenheim JJ, Murphy WJ (2000) Human endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression. Blood 96: 34–40PubMedGoogle Scholar
  22. 22.
    Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV (2006) CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol 177: 2651–2661PubMedGoogle Scholar
  23. 23.
    Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane bound chemokine with a X3C motif. Nature 385: 640–644PubMedCrossRefGoogle Scholar
  24. 24.
    Ruth JH, Volin MV, Haines III GK, Koch AE (2001) Fractalkine, a novel chemokine in rheumatoid arthritis and rat adjuvant-induced arthritis. Arthritis Rheum 44: 1568–1581PubMedCrossRefGoogle Scholar
  25. 25.
    Volin MV, Woods JM, Amin MA, Connors MA, Harlow LA, Koch AE (2001) Fractalkine: A novel angiogenic chemokine in rheumatoid arthritis. Am J Pathol 159: 1521–1526PubMedGoogle Scholar
  26. 26.
    Castor CW, Andrews PC, Swartz RD, Bignall MC, Aaron BP (1993) The origin, variety, distribution, and biologic fate of connective tissue activating peptide-III isoforms: Characteristics in patients with rheumatic, renal, and arterial disease. Arthritis Rheum 36: 1142–1153PubMedCrossRefGoogle Scholar
  27. 27.
    Caunt M, Hu L, Tang T, Brooks PC, Ibrahim S, Karpatkin S (2006). Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Res 66: 4125–4132PubMedCrossRefGoogle Scholar
  28. 28.
    Wang D, Wang H, Brown J, Daikoku T, Ning W, Shi Q, Richmond A, Strieter R, Dey SK, DuBois RN (2006) CXCL1 induced by prostaglandin E2 promotes angiogenesis in colorectal cancer. J Exp Med 203: 941–951PubMedCrossRefGoogle Scholar
  29. 29.
    Boulday G, Haskova Z, Reinders ME, Pal S, Broiscoe DM (2006) Vascular endothelial growth factor-induced signaling pathways in endothelial cells that mediate overexpression of the chemokine IFN-gamma-inducible protein of 10 kDa in vitro and in vivo. J Immunol 176: 3098–3107PubMedGoogle Scholar
  30. 30.
    Bodnar RJ, Yates CC, Wells A (2006) IP-10 blocks vascular endothelial growth factor-induced endothelial cell motility and tube formation via inhibition of calpain. Circ Res 98: 617–625PubMedCrossRefGoogle Scholar
  31. 31.
    Pablos JL, Santiago B, Galindo M, Torres C, Brehmer M, Blanco FJ, Garcia-Lazaro FJ (2003) Synoviocyte-derived CXCL12 is displayed on endothelium and induces angiogenesis in rheumatoid arthritis. J Immunol 170: 2147–2152PubMedGoogle Scholar
  32. 32.
    Salcedo R, Wasserman K, Young HA, Grimm MC, Howard OM, Anver MR, Kleinman HK, Murphy WJ, Oppenheim JJ (1999) Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1 alpha. Am J Pathol 154: 1125–1135PubMedGoogle Scholar
  33. 33.
    Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, William M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95: 952–958PubMedGoogle Scholar
  34. 34.
    Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM, Hooper AT, Raffii S (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12: 557–567PubMedCrossRefGoogle Scholar
  35. 35.
    Burns JM, Summers BC, Wang Y, Melikian A, Miao Z, Kuo CJ, Wei K, Wright K, Howard MC, Schall TJ (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion and tumor development. J Exp Med 203: 2201–2213PubMedCrossRefGoogle Scholar
  36. 36.
    Calatozzolo C, Maderna E, Pollo B, Gelati M, Marras C, Silvani A, Croci D, Boiardi A, Salmaggi A (2006) Prognostic value of CXCL12 expression in 40 low-grade oligodendrogliomas and oligoastrocytomas. Cancer Biol Ther 5: 827–832PubMedGoogle Scholar
  37. 37.
    Fujii T, Yonemitsu Y, Onimaru M, Tanii M, Inoue M, Hasegawa M, Kuwano H, Sueishi K (2006) Nonendothelial mesenchymal cell-derived MCP-1 is required for FGF-2 mediated therapeutic neovascularization. Arterioscler Thromb Vasc Biol 26: 2483–2489PubMedCrossRefGoogle Scholar
  38. 38.
    Vicari AP, Ait-Yahia S, Chemin K, Mueller A, Zlotnik A, Caux C (2000) Antitumor effects of the mouse chemokine 6 Ckine/SLC through angiostatic and immunological mechanisms. J Immunol 165: 1992–2000PubMedGoogle Scholar
  39. 39.
    Son KN, Hwang J, Kwon BS, Kim J (2006) Human CC chemokine CCL23 enhances expression of matrix metalloproteinase-2 and invasion of vascular endothelial cells. Biochem Biophys Res Commun 340: 498–504PubMedCrossRefGoogle Scholar
  40. 40.
    Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1 −/− mice reveals a role for fractalkine in atherogenesis. J Clin Invest 111: 333–340PubMedGoogle Scholar
  41. 41.
    McDermott DH, Fong AM, Yang Q (2003) Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans. J Clin Invest 111: 1241–1250PubMedGoogle Scholar
  42. 42.
    Borzi RM, Mazzetti I, Cattini L (2000) Human chondrocytes express functional chemokine receptors and release matrix-degrading enzymes in response to C-X-C and C-C chemokines. Arthritis Rheum 43: 1734–1741PubMedCrossRefGoogle Scholar
  43. 43.
    Patterson AM, Siddall H, Chamberlain G (2002) Expression of the Duffy antigen/receptor for chemokines (DARC) by the inflamed synovial endothelium. J Pathol 197: 108–116PubMedCrossRefGoogle Scholar
  44. 44.
    Wang J, Ou ZL, Hou YF, Luo JM, Shen ZZ, Ding J, Shao ZM (2006) Enhanced expression of Duffy antigen receptor for chemokines by breast cancer cells attenuates growth and metastasis potential. Oncogene 25: 7201–7211PubMedCrossRefGoogle Scholar
  45. 45.
    Fava RA, Olsen NJ, Spencer-Green G, Yeo KT, Yeo TK, Berse B, Jackman RW, Senger DR, Dvorak HF, Brown LF (1994) Vascular permeability factor/endothelial growth factor (VPF/VEGF): Accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med 180: 341–346PubMedCrossRefGoogle Scholar
  46. 46.
    Koch AE, Harlow LA, Haines GK, Amento EP, Unemori EN, Wong WL, Pope RM, Ferrara N (1994) Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol 152: 4149–4156PubMedGoogle Scholar
  47. 47.
    Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140: 947–959PubMedCrossRefGoogle Scholar
  48. 48.
    Qu Z, Huang XN, Ahmadi P, Andresevic J, Planck SR, Hart CE, Rosenbaum JT (1995) Expression of basic fibroblast growth factor in synovial tissue from patients with rheumatoid arthritis and degenerative joint disease. Lab Invest 73: 339–346PubMedGoogle Scholar
  49. 49.
    Goddard DH, Grossman SL, Williams WV, Weiner DB, Gross JL, Eidsvoog K (1992) Regulation of synovial cell growth: Coexpression of transforming growth factor β and basic fibroblast growth factor by cultured synovial cells. Arthritis Rheum 35: 1296–1303PubMedGoogle Scholar
  50. 50.
    Szekanecz Z, Haines GK, Harlow LA, Shah MR, Fong TW, Fu R, Lin SJ-W, Rayan G, Koch AE (1995) Increased synovial expression of transforming growth factor (TGF)-β receptor endoglin and TGF-β1 in rheumatoid arthritis: Possible interactions in the pathogenesis of the disease. Clin Immunol Immunopathol 76: 187–194PubMedCrossRefGoogle Scholar
  51. 51.
    Park CC, Morel JC, Amin MA, Connors MA, Harlow LA, Koch AE (2001) Evidence of IL-18 as a novel angiogenic mediator. J Immunol 167: 1644–1653PubMedGoogle Scholar
  52. 52.
    Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakuchi Y, Dinarello CA, Apte RN (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci USA 100: 2645–2650PubMedCrossRefGoogle Scholar
  53. 53.
    Angiolillo AL, Kanegane H, Sgadari C, Reaman GH, Tosato G (1997) Interleukin-15 promotes angiogenesis in vivo. Biochem Biophys Res Commun 233: 231–237PubMedCrossRefGoogle Scholar
  54. 54.
    Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, Goto J, Lotze MT, Sasaki H (2005) IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR2-dependent angiogenesis. J Immunol 175: 6177–6189PubMedGoogle Scholar
  55. 55.
    Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, Nuseir N (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α. Nature 329: 630–632PubMedCrossRefGoogle Scholar
  56. 56.
    Nakao S, Kuwano T, Ueda S, Kimura YN, Saijo Y, Nukiwa T, Strieter RM, Ishibashi T, Kuwano M, Ono M (2005) Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest 115: 2979–2991PubMedCrossRefGoogle Scholar
  57. 57.
    Wijelath ES, Carlsen B, Cole T, Chen J, Kothari S, Hammond WP (1997) Oncostatin M induces basic fibroblast growth factor expression in endothelial cells and promotes endothelial cell proliferation, migration and spindle morphology. J Cell Sci 110: 871–879PubMedGoogle Scholar
  58. 58.
    Koch AE, Fong TW, Volpert OV, Halloran MM, Bouck NP (1996) Interleukin-4 is an inhibitor of angiogenesis. Arthritis Rheum 39: S304CrossRefGoogle Scholar
  59. 59.
    Voest EE, Kenyon BM, O—Reilly MS, Truitt G, D’Amato RJ, Folkman J (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87: 581–586PubMedCrossRefGoogle Scholar
  60. 60.
    Waring PM, Carroll GJ, Kandiah DA, Buirski G, Metcalf D (1993) Increased levels of leukemia inhibitory factor in synovial fluid from patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum 36: 911–915PubMedCrossRefGoogle Scholar
  61. 61.
    Loetscher P, Dewald B, Baggiolini M, Seitz M (1994) Monocyte chemoattractant protein 1 and interleukin 8 production by rheumatoid synoviocytes Effects of anti-rheumatic drugs. Cytokine 6: 162–170PubMedCrossRefGoogle Scholar
  62. 62.
    Seitz M, Dewald B, Gerber N, Baggiolini M (1991) Enhanced production of neutrophilactivating peptide-1/interleukin-8 in rheumatoid arthritis. J Clin Invest 87: 463–469PubMedCrossRefGoogle Scholar
  63. 63.
    Volin MV, Harlow LA, Woods JM, Campbell PL, Amin MA, Tokuhira M, Koch AE (1999) Treatment with sulfasalazine or sulfapyridine, but not 5-aminosalicyclic acid, inhibits basic fibroblast growth factor-induced endothelial cell chemotaxis. Arthritis Rheum 42: 1927–1935PubMedCrossRefGoogle Scholar
  64. 64.
    Taylor PC, Peters AM, Paleolog E, Chapman PT, Elliott MJ, McCloskey R, Feldmann M, Maini RN (2000) Reduction of chemokine levels and leukocyte traffic to joints by tumor necrosis factor alpha blockade in patients with rheumatoid arthritis. Arthritis Rheum 43: 38–47PubMedCrossRefGoogle Scholar
  65. 65.
    Coxon A, Bolon B, Estrada J, Kaufman S, Scully S, Rattan A, Duryen D, Hu YL, Rex K, Pacheco E et al (2002) Inhibition of interleukin-1 but not tumor necrosis factor suppresses neovascularization in rat models of corneal angiogenesis and adjuvant arthritis. Arthritis Rheum 46: 2604–2612PubMedCrossRefGoogle Scholar
  66. 66.
    Kingsley G, Panayi G, Lanchbury J (1991) Immunotherapy of rheumatic disease — Practice and prospects. Immunol Today 12: 177–179PubMedCrossRefGoogle Scholar
  67. 67.
    Shibuya M (2003) VEGF-receptor inhibitors for anti-angiogenesis. Nippon Yakurigaku Zasshi 122: 498–503PubMedGoogle Scholar
  68. 68.
    Zhang R, Tian L, Chen LJ, Hou JM, Li G, Li J, Zhang L, Chen XC, Luo F, Jiang Y, Wei YQ (2006) Combination of MIG (CXCL9) chemokine gene therapy with lowdose cisplatin improves therapeutic efficacy against murine carcinoma. Gene Ther 13: 1263–1271PubMedCrossRefGoogle Scholar
  69. 69.
    Wente MN, Keane MP, Burdick MD, Friess H, Buchler MW, Ceyhan GO, Reber HA, Strieter RM, Hines OJ (2006) Blockade of the chemokine receptor CXCR2 inhibits pancreatic cancer cell-induced angiogenesis. Cancer Lett 241: 221–227PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Zoltán Szekanecz
    • 1
  • Alisa E. Koch
    • 2
    • 3
  1. 1.Division of Rheumatology, Third Department of MedicineUniversity of Debrecen Medical and Health Sciences CentreDebrecenHungary
  2. 2.Veterans’ AdministrationAnn Arbor Healthcare SystemAnn ArborUSA
  3. 3.Department of Internal Medicine, Division of RheumatologyUniversity of Michigan Health SystemAnn ArborUSA

Personalised recommendations