The fibroblast and myofibroblast in inflammatory angiogenesis

  • Patrick Auguste
  • François Vincent
  • Giulio Gabbiani
  • Alexis Desmoulière
Part of the Progress in Inflammation Research book series (PIR)


Normal wound healing includes a number of overlapping phases. After injury, there is an early inflammatory step characterised by haemorrhage and clotting. At this time, the wound has a provisional serum-derived extracellular matrix, which serves to seal the wound temporarily and allows the invasion of cells that carry out the repair process. In the next phase, consisting of granulation tissue development, fibroblasts invade the wound and commence replacing the provisional matrix with a more mature wound matrix. The fibroblasts present during the early granulation tissue phase resemble immature fibroblasts with a highly synthetic appearance. However, as the granulation tissue phase proceeds, fibroblasts start showing a new phenotype with prominent contractile structures represented by microfilament bundles or stress fibres; these structures express contractile proteins typical of smooth muscle cells, particularly of vascular smooth muscle cells, such as α-smooth muscle actin [1]. Recently, it has been shown that α-smooth muscle actin is largely responsible for force production by the myofibroblast both in vitro and in vivo. Myofibroblast differentiation is a complex process, regulated, by at least one cytokine [transforming growth factor (TGF)-β1] [2], an extracellular matrix component (fibronectin ED-A) [3] as well as the presence of mechanical tension [4] (for review, see [5]). Lastly, in the resolution phase of healing, there is considerable loss of cellularity essentially through apoptosis of several cell types including myofibroblasts [6].


Tumour Smooth Muscle Angiotensin Type Receptor Reaction Smooth MUSC Granulation Tissue Development Migration Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63: 21–29PubMedGoogle Scholar
  2. 2.
    Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol 122: 103–111PubMedCrossRefGoogle Scholar
  3. 3.
    Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta 1. J. Cell Biol 142: 873–881PubMedCrossRefGoogle Scholar
  4. 4.
    Hinz B, Gabbiani G (2003) Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 14: 538–546PubMedCrossRefGoogle Scholar
  5. 5.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3: 349–363PubMedCrossRefGoogle Scholar
  6. 6.
    Desmoulière A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146: 56–66PubMedGoogle Scholar
  7. 7.
    Ehrlich HP, Desmoulière A, Diegelmann RF, Cohen IK, Compton CC, Garner WL, Kapanci Y, Gabbiani G (1994) Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol 145: 105–113PubMedGoogle Scholar
  8. 8.
    Moulin V, Larochelle S, Langlois C, Thibault I, Lopez-Valle CA, Roy M (2004) Normal skin wound and hypertrophic scar myofibroblasts have differential responses to apoptotic inductors. J Cell Physiol 198: 350–358PubMedCrossRefGoogle Scholar
  9. 9.
    Desmoulière A, Darby IA, Gabbiani G (2003) Normal and pathological soft tissue remodeling: Role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Lab Invest 83: 1689–1707PubMedCrossRefGoogle Scholar
  10. 10.
    Bogatkevich GS, Tourkina E, Silver RM, Ludwicka-Bradley A (2001) Thrombin differentiates normal lung fibroblasts to a myofibroblast phenotype via the proteolytically activated receptor-1 and a protein kinase C-dependent pathway. J Biol Chem 276: 45184–45192PubMedCrossRefGoogle Scholar
  11. 11.
    ShiWen X, Chen Y, Denton CP, Eastwood M, Renzoni EA, Bou-Gharios G, Pearson JD, Dashwood M, du Bois RM, Black CM, Leask A, Abraham DJ (2004) Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell 15: 2707–2719CrossRefGoogle Scholar
  12. 12.
    Masterson R, Hewitson TD, Kelynack K, Martic M, Parry L, Bathgate R, Darby I, Becker G (2004) Relaxin down-regulates renal fibroblast function and promotes matrix remodelling in vitro. Nephrol Dial Transplant 19: 544–552PubMedCrossRefGoogle Scholar
  13. 13.
    Samuel CS, Mookerjee I, Masterson R, Tregear GW, Hewitson TD (2005) Relaxin regulates collagen overproduction associated with experimental progressive renal fibrosis. Ann NY Acad Sci 1041: 182–184PubMedCrossRefGoogle Scholar
  14. 14.
    Chaussain Miller C, Septier D, Bonnefoix M, Lecolle S, Lebreton-Decoster C, Coulomb B, Pellat B, Godeau G (2002) Human dermal and gingival fibroblasts in a three-dimensional culture: A comparative study on matrix remodeling. Clin Oral Investig 6: 39–50PubMedGoogle Scholar
  15. 15.
    Auguste P, Lemiere S, Larrieu-Laharque F, Bikfalvi A (2005) Molecular mechanisms of tumor vascularization. Crit Rev Oncol Hematol 54: 53–61PubMedCrossRefGoogle Scholar
  16. 16.
    Saucier C, Khoury H, Lai KM, Peschard P, Dankort D, Naujokas MA, Holash J, Yancopoulos GD, Muller WJ, Pawson T, Park M (2004) The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proc Natl Acad Sci USA 101: 2345–2350PubMedCrossRefGoogle Scholar
  17. 17.
    Nakao S, Kuwano T, Tsutsumi-Miyahara C, Ueda S, Kimura YN, Hamano S, Sonoda KH, Saijo Y, Nukiwa T, Strieter RM et al (2005) Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest 115: 2979–2991PubMedCrossRefGoogle Scholar
  18. 18.
    Cao R, Farnebo J, Kurimoto M, Cao Y (1999) Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB J 13: 2195–2202PubMedGoogle Scholar
  19. 19.
    Park CC, Morel JC, Amin MA, Connors MA, Harlow LA, Koch AE (2001) Evidence of IL-18 as a novel angiogenic mediator. J Immunol 167: 1644–1653PubMedGoogle Scholar
  20. 20.
    Ferrara N (2004) Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev 25: 581–611PubMedCrossRefGoogle Scholar
  21. 21.
    Rabbany SY, Heissig B, Hattori K, Rafii S (2003) Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol Med 9: 109–117PubMedCrossRefGoogle Scholar
  22. 22.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–348PubMedCrossRefGoogle Scholar
  23. 23.
    Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23: 879–894PubMedCrossRefGoogle Scholar
  24. 24.
    Maeda T, Desouky J, Friedl A (2006) Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene 25: 1408–1412PubMedCrossRefGoogle Scholar
  25. 25.
    Gotte M (2003) Syndecans in inflammation. FASEB J 17: 575–591PubMedCrossRefGoogle Scholar
  26. 26.
    Costa AMA, Tuchweber B, Rubbia-Brandt L, Peyrol S, Chevallier M, Adham M, Gabbiani G, Rosenbaum J, Desmoulière A (2001) Early activation of hepatic stellate cells and perisinusoidal extracellular matrix changes during ex vivo pig liver perfusion. J Submicrosc Cytol Pathol 33: 321–340Google Scholar
  27. 27.
    Bioulac-Sage P, Lafon ME, Le Bail B, Balabaud C (1988) Perisinusoidal and pit cells in liver sinusoids. In: P Bioulac-Sage, C Balabaud (eds): Sinusoids in human liver: Health and disease. Kupffer Cell Foundation, Leiden, 38–50Google Scholar
  28. 28.
    Wanless IR (2002) Vascular disorders. In: RNM MacSween, AD Burt, BC Portmann, KG Ishak, PJ Scheuer, PP Anthony (eds): Pathology of the Liver, 4th edn. Churchill Livingstone, London, 539–573Google Scholar
  29. 29.
    Guyot C, Lepreux S, Combe C, Doudnikoff E, Bioulac-Sage P, Balabaud C, Desmoulière A (2006) Hepatic fibrosis and cirrhosis: The (myo)fibroblastic cell subpopulations involved. Int J Biochem Cell Biol 38: 135–151PubMedGoogle Scholar
  30. 30.
    Goldblatt H, Linch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59: 347–379CrossRefGoogle Scholar
  31. 31.
    Fasciolo JC (1990) The experimental observation that led to discovery of angiotensin. 1939 Buenos Aires, Argentina. Hypertension 16: 194–198PubMedGoogle Scholar
  32. 32.
    Page IH (1990) Hypertension research. A memoir 1920–1960. Hypertension 16: 199–200PubMedGoogle Scholar
  33. 33.
    Campbell DJ, Habener JF (1986) Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest 78: 31–39PubMedCrossRefGoogle Scholar
  34. 34.
    Wright JW, Harding JW (1997) Important role for angiotensin III and IV in the brain renin-angiotensin system. Brain Res Brain Res Rev 25: 96–124PubMedCrossRefGoogle Scholar
  35. 35.
    Whitebread S, Mele M, Kamber B, de Gasparo M (1989) Preliminary biochemical char acterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163: 284291CrossRefGoogle Scholar
  36. 36.
    Weber KT (1999) Angiotensin II and connective tissue: Homeostasis and reciprocal regulation. Regul Pept 82: 1–17PubMedCrossRefGoogle Scholar
  37. 37.
    Achard J, Fournier A, Mazouz H, Caride VJ, Penar PL, Fernandez LA (2001) Protection against ischemia: A physiological function of the renin-angiotensin system. Biochem Pharmacol 62: 261–271PubMedCrossRefGoogle Scholar
  38. 38.
    Ilich N, Hollenberg NK, Williams DH, Abrams HL (1979) Time course of increased collateral arterial and venous endothelial cell turnover after renal stenosis in the rat. Circ Res 45: 579–582PubMedGoogle Scholar
  39. 39.
    Cuttino JT, Bartrum RJ, Hollenberg NK, Abrams HL (1975) Collateral vessel formation: Isolation of a transferable factor promoting vascular response. Basic Res Cardiol 70: 568–573PubMedCrossRefGoogle Scholar
  40. 40.
    Fernandez LA, Twickler J, Mead A (1985) Neovascularization produced by angiotensin II. J Lab Clin Med 105: 141–145PubMedGoogle Scholar
  41. 41.
    Le Noble FAC, Hekking JW, van Straaten HW, Slaaf DW, Struyker-Boudier HAJ (1991) Angiotensin II stimulates angiogenesis in the chorioallantoic membrane of the chick embryo. Eur J Pharmacol 195: 305–306PubMedCrossRefGoogle Scholar
  42. 42.
    Le Noble FA, Schreurs NH, van Straaten HW, Slaaf DW, Smits JF, Rogg H, Struijker-Boudier HA (1993) Evidence for a novel angiotensin II receptor involved in angiogenesis in chick embryo chorioallantoic membrane. Am J Physiol 264: R460–R465PubMedGoogle Scholar
  43. 43.
    Andrade SP, Cardoso CC, Machado RD, Beraldo WT (1996) Angiotensin-II-induced angiogenesis in sponge implants in mice. Int J Microcirc Clin Exp 16: 302–307PubMedCrossRefGoogle Scholar
  44. 44.
    Volpert OV, Ward WF, Lingen MW, Chesler L, Solt DB, Johnson MD, Molteni A, Polverini PJ, Bouck NP (1996) Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest 98: 671–679PubMedCrossRefGoogle Scholar
  45. 45.
    Nadal JA, Scicli GM, Carbini LA, Nussbaum JJ, Scicli AG (1999) Angiotensin II, and retinal pericytes migration. Biochem Biophys Res Commun 266: 382–385PubMedCrossRefGoogle Scholar
  46. 46.
    Peifley KA, Winkles JA (1998) Angiotensin II, and endothelin-1 increase fibroblast growth factor-2 mRNA expression in vascular smooth muscle cells. Biochem Biophys Res Commun 242: 202–208PubMedCrossRefGoogle Scholar
  47. 47.
    Otani A, Takagi H, Oh K, Suzuma K, Matsumura M, Ikeda E, Honda Y (2000) Angiotensin II-stimulated vascular endothelial growth factor expression in bovine retinal pericytes. Invest Ophthalmol Vis Sci 41: 1192–1199PubMedGoogle Scholar
  48. 48.
    Williams B, Baker AQ, Gallacher B, Lodwick D (1995) Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension 25: 913–917PubMedGoogle Scholar
  49. 49.
    Page EL, Robitaille GA, Pouyssegur J, Richard DE (2002) Induction of hypoxia-inducible factor-1 by transcriptional and translational mechanisms. J Biol Chem 277: 48403–48409PubMedCrossRefGoogle Scholar
  50. 50.
    Chua CC, Hamdy RC, Chua BH (1998) Upregulation of vascular endothelial growth factor by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1401: 187–194PubMedCrossRefGoogle Scholar
  51. 51.
    Sasaki K, Murohara T, Ikeda H, Sugaya T, Shimada T, Shintani S, Imaizumi T (2002) Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J Clin Invest 109: 603–611PubMedGoogle Scholar
  52. 52.
    Fabre JE, Rivard A, Magner M, Silver M, Isner JM (1999) Tissue inhibition of angiotensin-converting enzyme activity stimulates angiogenesis in vivo. Circulation 99: 3043–3049PubMedGoogle Scholar
  53. 53.
    Silvestre JS, Bergaya S, Tamarat R, Duriez M, Boulanger CM, Levy BI (2001) Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway. Circ Res 89: 678–683PubMedCrossRefGoogle Scholar
  54. 54.
    Munzenmaier DH, Greene AS (1996) Opposing actors of angiotensin II on microvascular growth and arterial pressure. Hypertension 27: 760–765PubMedGoogle Scholar
  55. 55.
    Monton M, Castilla MA, Alvarez Arroyo MV, Tan D, Gonzalez-Pacheco FR, Lopez Farre A, Casado S, Caramelo C (1998) Effects of angiotensin II on endothelial cell growth: Role of AT-1 and AT-2 receptors. J Am Soc Nephrol 9: 969–974PubMedGoogle Scholar
  56. 56.
    Machado RD, Santos RA, Andrade SP (2000) Opposing actions of angiotensins on angiogenesis. Life Sci 66: 67–76PubMedCrossRefGoogle Scholar
  57. 57.
    Walsh DA, Hu DE, Wharton J, Catravas JD, Blake DR, Fan TP (1997) Sequential development of angiotensin receptors and angiotensin I converting enzyme during angiogenesis in the rat subcutaneous sponge granuloma. Br J Pharmacol 120: 1302–1311PubMedCrossRefGoogle Scholar
  58. 58.
    Yesner R (1978) Spectrum of lung cancer and ectopic hormones. Pathol Annu 13: 217–240Google Scholar
  59. 59.
    Fernandez LA, Olsen TG, Barwick KW, Sanders M, Kaliszewski C, Inagami T (1986) Renin in angiolymphoid hyperplasia with eosinophilia. Its possible effect on vascular proliferation. Arch Pathol Lab Med 110: 1131–1135PubMedGoogle Scholar
  60. 60.
    Ariza A, Fernandez LA, Inagami T, Kim JH, Manuelidis EE (1988) Renin in glioblastoma multiforme and its role in neovascularization. Am J Clin Pathol 90: 437–441PubMedGoogle Scholar
  61. 61.
    Reddy MK, Baskaran K, Molteni A (1995) Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic-cancer cells. Proc Soc Exp Biol Med 210: 221–226PubMedGoogle Scholar
  62. 62.
    Taylor GM, Cook HT, Sheffield EA, Hanson C, Peart WS (1997) Renin in blood vessels in human pulmonary tumors. Am J Pathol 130: 543–551Google Scholar
  63. 63.
    Yoshiji H, Kuriyama S, Kawata M, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Fukui H (2001) The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: Possible role of the vascular endothelial growth factor. Clin Cancer Res 7: 1073–1078PubMedGoogle Scholar
  64. 64.
    Egami K, Murohara T, Shimada T, Sasaki K, Shintani S, Sugaya T, Ishii M, Akagi T, Ikeda H, Matsuishi T, Imaizumi T (2003) Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J Clin Invest 112: 67–75PubMedGoogle Scholar
  65. 65.
    Lever AF, Hole DJ, Gillis CR, McCallum IR, McInnes GT, Mac-Kinnon PL, Meredith PA, Murray LS, Reid JL (1998) Do inhibitors of angiotesin-I-converting enzyme protect against risk of cancer? Lancet 352: 179–184PubMedCrossRefGoogle Scholar
  66. 66.
    Hill R, Song Y, Cardiff RD, Van Dyke T (2005) Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123: 1001–1011PubMedCrossRefGoogle Scholar
  67. 67.
    Hinz B, Gabbiani G, Chaponnier C (2002) The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J Cell Biol 157: 657–663PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Patrick Auguste
    • 1
    • 2
  • François Vincent
    • 3
  • Giulio Gabbiani
    • 4
  • Alexis Desmoulière
    • 5
  1. 1.INSERM, U889BordeauxFrance
  2. 2.University Victor Segalen Bordeaux 2BordeauxFrance
  3. 3.Centre Hospitalier UniversitaireLimogesFrance
  4. 4.Department of Pathology and ImmunologyCentre Médical UniversitaireGenevaSwitzerland
  5. 5.Faculty of Pharmacy, Department of PhysiologyUniversity of LimogesLimogesFrance

Personalised recommendations