Dendritic cells and angiogenesis

  • Elena Riboldi
  • Silvano Sozzani
  • Marco Presta
Part of the Progress in Inflammation Research book series (PIR)


Dendritic cells (DC) are professional antigen-presenting cells with a unique ability in inducing T and B cell response as well as immune tolerance [1, 2]. DC reside in an immature state in peripheral tissues where they exert a sentinel function for incoming antigens. Upon microbial contact and stimulation by inflammatory cytokines, DC uptake antigens, undergo a process of maturation, and traffic via the afferent lymphatics into the T cell area of the draining lymph node to initiate immune responses [3, 4].


Vascular Endothelial Growth Factor Dendritic Cell Immature State Cell Area Immune Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banchereau, J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811PubMedCrossRefGoogle Scholar
  2. 2.
    Steinman RM (2003) Some interfaces of dendritic cell biology. APMIS 111: 675–697PubMedCrossRefGoogle Scholar
  3. 3.
    Sozzani, S (2005) Dendritic cell trafficking: More than just chemokines. Cytokine Growth Factor Rev 16: 581–592PubMedCrossRefGoogle Scholar
  4. 4.
    Sallusto F, Lanzavecchia A (1999) Mobilizing dendritic cells for tolerance, priming, and chronic inflammation. J Exp Med 189: 611–614PubMedCrossRefGoogle Scholar
  5. 5.
    Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2: 151–161PubMedCrossRefGoogle Scholar
  6. 6.
    Barchet WM, Cella M, Colonna M (2005) Plasmacytoid dendritic cells — Virus experts of innate immunity. Semin Immunol 17: 253–261PubMedCrossRefGoogle Scholar
  7. 7.
    Dzionek AA, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, Buck DW, Schmitz J (2000) BDCA-2, BDCA-3, and BDCA-4: Three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165: 6037–6046PubMedGoogle Scholar
  8. 8.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216PubMedCrossRefGoogle Scholar
  9. 9.
    Moser M, Murphy KM (2000) Dendritic cell regulation of TH1–TH2 development. Nat Immunol 1: 199–205PubMedCrossRefGoogle Scholar
  10. 10.
    Mahnke K, Enk AH (2005) Dendritic cells: Key cells for the induction of regulatory T cells? Curr Top Microbiol Immunol 293: 133–150PubMedCrossRefGoogle Scholar
  11. 11.
    Vulcano M, Dusi S, Lissandrini D, Badolato R, Mazzi P, Riboldi E, Borroni E, Calleri A, Donini M, Plebani A et al (2004) Toll receptor-mediated regulation of NADPH oxidase in human dendritic cells. J Immunol 173: 5749–5756PubMedGoogle Scholar
  12. 12.
    Vermi W, Facchetti F, Riboldi E, Heine H, Scutera S, Stornello S, Ravarino D, Cappello P, Giovarelli M, Badolato M et al (2006) Role of dendritic cell-derived CXCL13 in the pathogenesis of Bartonella henselae B-rich granuloma. Blood 107: 454460CrossRefGoogle Scholar
  13. 13.
    Riboldi E, Musso T, Moroni E, Urbinati C, Bernasconi S, Rusnati M, Adorini L, Presta M, Sozzani S (2005) Cutting edge: Proangiogenic properties of alternatively activated dendritic cells. J Immunol 175: 2788–2792PubMedGoogle Scholar
  14. 14.
    Zhang M, Tang H, Guo Z, An H, Zhu X, Song W, Guo J, Huang X, Chen T, Wang J, Cao X (2004) Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol 5: 1124–1133PubMedCrossRefGoogle Scholar
  15. 15.
    Webster B, Ekland EH, Agle LM, Chyou S, Ruggieri R, Lu TT (2006) Regulation of lymph node vascular growth by dendritic cells. J Exp Med 203: 1903–1913PubMedCrossRefGoogle Scholar
  16. 16.
    Goerdt S, Orfanos CE (1999) Other functions, other genes: Alternative activation of antigen-presenting cells. Immunity 10: 137–142PubMedCrossRefGoogle Scholar
  17. 17.
    Mantovani AS, Sozzani S, Locati M, Schioppa T, Saccani A, Allavena P, Sica A (2004) Infiltration of tumours by macrophages and dendritic cells: Tumour-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Novartis Found Symp 256: 137–145PubMedCrossRefGoogle Scholar
  18. 18.
    Verhasselt V, Buelens C, Willems F, De Groote D, Haeffner-Cavaillon N, Goldman M (1997) Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: Evidence for a soluble CD 14-dependent pathway. J Immunol 158: 2919–2925PubMedGoogle Scholar
  19. 19.
    de Saint-Vis B, Fugier-Vivier I, Massacrier C, Gaillard C, Vanbervliet B, Ait-Yahia S, Banchereau J, Liu YJ, Lebecque S, Caux C (1998) The cytokine profile expressed by human dendritic cells is dependent on cell subtype and mode of activation. J Immunol 160: 1666–1676PubMedGoogle Scholar
  20. 20.
    Trinchieri G (2003) Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3: 133–146PubMedCrossRefGoogle Scholar
  21. 21.
    Stoll S, Jonuleit H, Schmitt E, Muller G, Yamauchi H, Kurimoto M, Knop J, Enk AH (1998) Production of functional IL-18 by different subtypes of murine and human dendritic cells (DC): DC-derived IL-18 enhances IL-12-dependent Th1 development. Eur J Immunol 28: 3231–3239PubMedCrossRefGoogle Scholar
  22. 22.
    Mantovani A, Sozzani S (2000) Chemokines. In: F Balkwill (ed): The cytokine network. Oxford University Press, Oxford, 103–125Google Scholar
  23. 23.
    Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA (2006) Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 42: 768–778PubMedCrossRefGoogle Scholar
  24. 24.
    Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, Banchereau J (1994) Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180: 1263–1272PubMedCrossRefGoogle Scholar
  25. 25.
    Padovan E, Spagnoli GC, Ferrantini M, Heberer M (2002) IFN-alpha2a induces IP-10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and enhances their capacity to attract and stimulate CD8+ effector T cells. J Leukoc Biol 71: 669–676PubMedGoogle Scholar
  26. 26.
    Means TK, Hayashi F, Smith KD, Aderem A, Luster AD (2003) The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol 170: 5165–5175PubMedGoogle Scholar
  27. 27.
    Vicari AP, Ait-Yahia S, Chemin K, Mueller A, Zlotnik A, Caux C (2000) Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. J Immunol 165: 1992–2000PubMedGoogle Scholar
  28. 28.
    Dubois B, Massacrier C, Caux C (2001) Selective attraction of naive and memory B cells by dendritic cells. J Leukoc Biol 70: 633–641PubMedGoogle Scholar
  29. 29.
    Doyen V, Rubio M, Braun D, Nakajima T, Abe J, Saito H, Delespesse G, Sarfati M (2003) Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med 198: 1277–1283PubMedCrossRefGoogle Scholar
  30. 30.
    Bourbie-Vaudaine S, Blanchard N, Hivroz C, Romeo PH (2006) Dendritic cells can turn CD4+ T lymphocytes into vascular endothelial growth factor-carrying cells by intercellular neuropilin-1 transfer. J Immunol 177: 1460–1469PubMedGoogle Scholar
  31. 31.
    Mainou-Fowler T, Angus B, Miller S, Proctor SJ, Taylor PR, Wood KM (2006) Micro-vessel density and the expression of vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PdEGF) in classical Hodgkin lymphoma (HL). Leuk Lymphoma 47: 223–230PubMedCrossRefGoogle Scholar
  32. 32.
    Fiallo P, Clapasson A, Favre A, Pesce C (2002) Overexpression of vascular endothelial growth factor and its endothelial cell receptor KDR in type 1 leprosy reaction. Am J Trop Med Hyg 66: 180–185PubMedGoogle Scholar
  33. 33.
    Liu YJ (2005) IPC: Professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306PubMedCrossRefGoogle Scholar
  34. 34.
    Brassard DL, Grace MJ, Bordens RW (2002) Interferon-alpha as an immunotherapeutic protein. J Leukoc Biol 71: 565–581PubMedGoogle Scholar
  35. 35.
    Penna G, Vulcano M, Roncari A, Facchetti F, Sozzani S, Adorini L (2002) Cutting edge: Differential chemokine production by myeloid and plasmacytoid dendritic cells. J Immunol 169: 6673–6676PubMedGoogle Scholar
  36. 36.
    Curiel TJ, Cheng P, Mottram P, Alvarez X, Moons L, Evdemon-Hogan M, Wei S, Zou L, Kryczek I, Hoyle G et al (2004) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res 64: 5535–5538PubMedCrossRefGoogle Scholar
  37. 37.
    Hoehn GT, Stokland T, Amin S, Ramirez M, Hawkins AL, Griffin CA, Small D, Civin CI (1996) Tnk1: A novel intracellular tyrosine kinase gene isolated from human umbilical cord blood CD34+/Lin/CD38 stem/progenitor cells. Oncogene 12: 903–913PubMedGoogle Scholar
  38. 38.
    Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D, Carbone DP (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2: 1096–1103PubMedCrossRefGoogle Scholar
  39. 39.
    Casella I, Feccia T, Chelucci C, Samoggia P, Castelli G, Guerriero R, Parolini I, Petrucci E, Pelosi E, Morsilli O et al (2003) Autocrine-paracrine VEGF loops potentiate the maturation of megakaryocytic precursors through Flt1 receptor. Blood 101: 1316–1323PubMedCrossRefGoogle Scholar
  40. 40.
    Katoh O, Tauchi H, Kawaishi K, Kimura A, Satow Y (1995) Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 55: 5687–5692PubMedGoogle Scholar
  41. 41.
    Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95: 952–958PubMedGoogle Scholar
  42. 42.
    Clauss M, Weich H, Breier G, Knies U, Rockl W, Waltenberger J, Risau W (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 271: 17629–17634PubMedCrossRefGoogle Scholar
  43. 43.
    Fernandez Pujol B, Lucibello FC, Zuzarte M, Lutjens P, Muller R, Havemann K (2001) Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur J Cell Biol 80: 99–110PubMedCrossRefGoogle Scholar
  44. 44.
    Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87: 3336–3343PubMedGoogle Scholar
  45. 45.
    Hamrah, P, Chen L, Zhang Q, Dana MR (2003) Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol 163: 57–68PubMedGoogle Scholar
  46. 46.
    Chen L, Hamrah P, Cursiefen C, Zhang Q, Pytowski B, Streilein JW, Dana MR (2004) Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat Med 10: 813–815PubMedCrossRefGoogle Scholar
  47. 47.
    Dzionek A, Inagaki Y, Okawa K, Nagafune J, Rock J, Sohma Y, Winkels G, Zysk M, Yamaguchi Y, Schmitz J (2002) Plasmacytoid dendritic cells: From specific surface markers to specific cellular functions. Hum Immunol 63: 1133–1148PubMedCrossRefGoogle Scholar
  48. 48.
    Tordjman R, Lepelletier Y, Lemarchandel V, Cambot M, Gaulard P, Hermine O, Romeo PH (2002) A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat Immunol 3: 477–482PubMedGoogle Scholar
  49. 49.
    Young MR (2006) Cytokine-containing gelfoam implants at a postsurgical tumor excision site to stimulate local immune reactivity. Int J Cancer 119: 133–138PubMedCrossRefGoogle Scholar
  50. 50.
    Young MR, Cigal M (2006) Tumor skewing of CD34+ cell differentiation from a dendritic cell pathway into endothelial cells. Cancer Immunol Immunother 55: 558–568PubMedCrossRefGoogle Scholar
  51. 51.
    Staquet MJ, Godefroy S, Jacquet C, Viac J, Schmitt D (2001) Vascular endothelial growth factor (VEGF) induces human Langerhans cell migration. Arch Dermatol Res 293: 26–28PubMedCrossRefGoogle Scholar
  52. 52.
    Oyama TS, Ran S, Ishida T, Nadaf S, Kerr L, Carbone DP, Gabrilovich DI (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160: 1224–1232PubMedGoogle Scholar
  53. 53.
    Laxmanan S, Robertson SW, Wang E, Lau JS, Briscoe DM, Mukhopadhyaya D (2005) Vascular endothelial growth factor impairs the functional ability of dendritic cells through Id pathways. Biochem Biophys Res Commun 334: 193–198PubMedCrossRefGoogle Scholar
  54. 54.
    Dikov MM, Ohm JE, Ray N, Tchekneva EE, Burlison J, Moghanaki D, Nadaf S, Carbone DP (2005) Differential roles of vascular endothelial growth factor receptors 1 and 2 in dendritic cell differentiation. J Immunol 174: 215–222PubMedGoogle Scholar
  55. 55.
    Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5: 2963–2970PubMedGoogle Scholar
  56. 56.
    Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, Bhandari V, Kang MJ, Cohn L, Kim YK, McDonald DM, Elias JA (2004) Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med 10: 1095–1103PubMedCrossRefGoogle Scholar
  57. 57.
    Rutella S, Danese S, Leone G (2006) Tolerogenic dendritic cells: Cytokine modulation comes of age. Blood 108: 1435–1440PubMedCrossRefGoogle Scholar
  58. 58.
    Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24: 99–146PubMedCrossRefGoogle Scholar
  59. 59.
    Borkowski TA, Letterio JJ, Farr AG, Udey MC (1996) A role for endogenous transforming growth factor beta 1 in Langerhans cell biology: The skin of transforming growth factor beta 1 null mice is devoid of epidermal Langerhans cells. J Exp Med 184: 2417–2422PubMedCrossRefGoogle Scholar
  60. 60.
    Geissmann F, Revy P, Regnault A, Lepelletier Y, Dy M, Brousse N, Amigorena S, Hermine O, Durandy A (1999) TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol 162: 4567–4575PubMedGoogle Scholar
  61. 61.
    Rutella S, Bonanno G, Procoli A, Mariotti A, de Ritis DG, Curti A, Danese S, Pessina G, Pandolfi S, Natoni F et al (2006) Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin, (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood 108: 218–227PubMedCrossRefGoogle Scholar
  62. 62.
    Kawamura K, Iyonaga K, Ichiyasu H, Nagano J, Suga M, Sasaki Y (2005) Differentiation, maturation, and survival of dendritic cells by osteopontin regulation. Clin Diagn Lab Immunol 12: 206–212PubMedCrossRefGoogle Scholar
  63. 63.
    Guruli G, Pflug BR, Pecher S, Makarenkova V, Shurin MR, Nelson JB (2004) Function and survival of dendritic cells depend on endothelin-1 and endothelin receptor autocrine loops. Blood 104: 2107–2115PubMedCrossRefGoogle Scholar
  64. 64.
    Leali D, DelľEra P, Stabile H, Sennino B, Chambers AF, Naldini A, Sozzani S, Nico B, Ribatti D, Presta M (2003) Osteopontin (Eta-1) and fibroblast growth factor-2 cross-talk in angiogenesis. J Immunol 171: 1085–1093PubMedGoogle Scholar
  65. 65.
    Weiss JM, Renkl AC, Maier CS, Kimmig M, Liaw L, Ahrens T, Kon S, Maeda M, Hotta H, Uede T, Simon JC (2001) Osteopontin is involved in the initiation of cutaneous contact hypersensitivity by inducing Langerhans and dendritic cell migration to lymph nodes. J Exp Med 194: 1219–1229PubMedCrossRefGoogle Scholar
  66. 66.
    Renkl AC, Wussler J, Ahrens T, Thoma K, Kon S, Uede T, martin SF, Simon JC, Weiss JM (2005) Osteopontin functionally activates dendritic cells and induces their differentiation towards a Th1-polarizing phenotype. Blood 106: 946–955PubMedCrossRefGoogle Scholar
  67. 67.
    Ashkar S, Weber GF, Panoutsakopoulou V, Sanchirico ME, Jansson M, Zawaideh S, Rittling SR, Denhardt DT, Glimcher MJ, Cantor H (2000) Eta-1 (osteopontin): An early component of type-1 (cell-mediated) immunity. Science 287: 860–864PubMedCrossRefGoogle Scholar
  68. 68.
    Abel B, Freigang S, Bachmann MF, Boschert U Kopf M (2005) Osteopontin is not required for the development of Th1 responses and viral immunity. J Immunol 175: 6006–6013PubMedGoogle Scholar
  69. 69.
    Shinohara ML, Lu L, Bu J, Werneck MB, Kobayashi KS, Glimcher LH, Cantor H (2006) Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol 7: 498–506PubMedCrossRefGoogle Scholar
  70. 70.
    Marteau F, Gonzalez NS, Communi D, Goldman M, Boeynaems JM (2005) Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood 106: 3860–3866PubMedCrossRefGoogle Scholar
  71. 71.
    Demeure CE, Tanaka H, Mateo V, Rubio M, Delespesse G, Sarfati M (2000) CD47 engagement inhibits cytokine production and maturation of human dendritic cells. J Immunol 164: 2193–2199PubMedGoogle Scholar
  72. 72.
    Xia CQ, Kao KJ (2003) Effect of CXC chemokine platelet factor 4 on differentiation and function of monocyte-derived dendritic cells. Int Immunol 15: 1007–1015PubMedCrossRefGoogle Scholar
  73. 73.
    Fricke I, Mitchell D, Petersen F, Bohle A, Bulfone-Paus S, Brandau S (2004) Platelet factor 4 in conjunction with IL-4 directs differentiation of human monocytes into specialized antigen-presenting cells. FASEB J 18: 1588–1590PubMedGoogle Scholar
  74. 74.
    Ribatti D, Vacca A, Nico B, Crivellato E, De Falco G, Presta M (2003) Cross talk between haematopoiesis and angiogenesis. Adv Exp Med Biol 522: 25–36PubMedGoogle Scholar
  75. 75.
    Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125: 725–732PubMedGoogle Scholar
  76. 76.
    Choi J, Enis DR, Koh KP, Shiao SL, Pober JS (2004) T lymphocyte-endothelial cell interactions. Annu Rev Immunol 22: 683–709PubMedCrossRefGoogle Scholar
  77. 77.
    Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC (2001) CD34 blood-derived human endothelial cell progenitors. Stem Cells 19: 304–312PubMedCrossRefGoogle Scholar
  78. 78.
    Conejo-Garcia JR, Benencia F, Courreges MC, Kang E, Mohamed-Hadley A, Buckanovich RJ, Holtz DO, Jenkins A, Na H, Zhang L et al (2004) Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of VEGF-A. Nat Med 10: 950–958PubMedCrossRefGoogle Scholar
  79. 79.
    Conejo-Garcia JR, Buckanovich RJ, Benencia F, Courreges MC, Rubin SC, Carroll RG, Coukos G (2005) Vascular leukocytes contribute to tumor vascularization. Blood 105: 679–681PubMedCrossRefGoogle Scholar
  80. 80.
    Coukos G, Tenencia F, Buckanovich RJ, Conejo-Garcia JR (2005) The role of dendritic cell precursors in tumour vasculogenesis. Br J Cancer 92: 1182–1187PubMedCrossRefGoogle Scholar
  81. 81.
    Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma. Nat Rev Cancer 3: 411–421PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Elena Riboldi
    • 1
  • Silvano Sozzani
    • 1
  • Marco Presta
    • 1
  1. 1.Unit of General Pathology and Immunology, Department of Biomedical Sciences and BiotechnologyUniversity of BresciaBresciaItaly

Personalised recommendations