The angiogenic drive in chronic inflammation: Hypoxia and the cytokine milieu

  • Petec C. Taylor
Part of the Progress in Inflammation Research book series (PIR)


In health, angiogenesis, or growth of new blood vessels from pre-existing vasculature, occurs during growth and the female reproductive cycle. It is also a feature of tissue repair following injury and contributes to the pathogenesis of a number of disease states. Angiogenesis arises when hypoxic, diseased or injured tissues secrete pro-angiogenic molecules and is regulated by a complex set of inducers and inhibitors. However, dysregulated angiogenesis contributes to pathological conditions such as chronic gingivitis, diabetic retinopathy, rheumatoid arthritis (RA) and cancer. For the purposes of this brief chapter the example of RA is used to illustrate the clinical correlates of angiogenesis in a pathological setting.


Rheumatoid Arthritis Blood Vessel Disease State Pathological Condition Chronic Inflammation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liekens S, De Clercq E, Neyts J (2001) Angiogenesis: Regulators and clinical applications. Biochem Pharmacol 61: 253–270PubMedCrossRefGoogle Scholar
  2. 2.
    Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13: 9–22PubMedGoogle Scholar
  3. 3.
    Senger DR, Galli SJ, Dvořak AM, Perruzzi CA, Harvey VS, Dvořak H (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983–985PubMedCrossRefGoogle Scholar
  4. 4.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9: 669–676PubMedCrossRefGoogle Scholar
  5. 5.
    Ferrara N (2004) Vascular endothelial growth factor: Basic science and clinical progress. Endocr Rev 25: 581–611PubMedCrossRefGoogle Scholar
  6. 6.
    Alon T, Hemo I, Itin A, Pe'er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1: 1024–1028PubMedCrossRefGoogle Scholar
  7. 7.
    Benjamin LE, Golijanin D, Itin A, Pede D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103: 159–165PubMedCrossRefGoogle Scholar
  8. 8.
    Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273: 30336–30343PubMedCrossRefGoogle Scholar
  9. 9.
    O—Connor DS, Schechner JS, Adida C, Mesri M, Rothermel AL, Li F, Nath AK, Pober JS, Altieri DC (2000) Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 156: 393–398Google Scholar
  10. 10.
    Brock TA, Dvořak HF, Senger DR (1991) Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells. Am J Pathol 138: 213–221PubMedGoogle Scholar
  11. 11.
    Koolwijk P, van Erck MG, de Vree WJ, Vermeer MA, Weich HA, Hanemaaijer R, van Hinsbergh VW (1996) Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol 132: 1177–1188PubMedCrossRefGoogle Scholar
  12. 12.
    Taylor PC, Sivakumar B (2005) Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol 17: 293–298PubMedCrossRefGoogle Scholar
  13. 13.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27–31PubMedCrossRefGoogle Scholar
  14. 14.
    Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Sheilds JD, Pead D, Gillatt D, Harper SJ (2002) VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62: 4123–4131PubMedGoogle Scholar
  15. 15.
    Levy AP, Levy NS, Wegner S, Goldberg MA (1995) Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270: 13333–13340PubMedCrossRefGoogle Scholar
  16. 16.
    Levy NS, Goldberg MA, Levy AP (1997) Sequencing of the human vascular endothelial growth factor (VEGF) 3′ untranslated region (UTR): Conservation of five hypoxia-inducible RNA-protein binding sites. Biochim Biophys Acta 1352: 167–173PubMedGoogle Scholar
  17. 17.
    Levy AP, Levy NS, Goldberg MA (1996) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271: 2746–2753PubMedCrossRefGoogle Scholar
  18. 18.
    Masson N, Ratcliffe PJ (2003) HIF prolyl and asparaginyl hydroxylases in the biological response to intra cellular O2 levels. J Cell Sci 116: 3041–3049PubMedCrossRefGoogle Scholar
  19. 19.
    Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim AV, Hebestreit HF, Mukherji M, Schofeld CJ et al (2001) Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472PubMedCrossRefGoogle Scholar
  20. 20.
    Lando D, Gorman JJ, Whitelaw ML, Peet DJ (2003) Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. Eur J Biochem 270: 781–790PubMedCrossRefGoogle Scholar
  21. 21.
    Bilton RL, Booker GW (2003) The subtle side to hypoxia inducible factor (HIFalpha) regulation. Eur J Biochem 270: 791–798PubMedCrossRefGoogle Scholar
  22. 22.
    Hellwig-Burgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W (1999) Interleukin-1 beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 94: 1561–1567PubMedGoogle Scholar
  23. 23.
    Albina JE, Mastrofrancesco B, Vessella JA, Louis CA, Henry WL, Jr, Reichner JS (2001) HIF-1 expression in healing wounds: HIF-1 alpha induction in primary inflammatory cells by TNF-alpha. Am J Physiol Cell Physiol 281: C1971–1977PubMedGoogle Scholar
  24. 24.
    Jung Y, Isaacs JS, Lee S, Trepel J, Liu ZG, Neckers L (2003) Hypoxia-inducible factor induction by tumour necrosis factor in normoxic cells requires receptor-interacting protein-dependent nuclear factor kappa B activation. Biochem J 370: 1011–1017PubMedCrossRefGoogle Scholar
  25. 25.
    Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L (2003) IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J 17: 2115–2117PubMedGoogle Scholar
  26. 26.
    Metzen E, Zhou J, Jelkmann W, Fandrey J, Brune B (2003) Nitric oxide impairs normoxic degradation of HIF-1alpha by inhibition of prolyl hyxdroxylases. Mol Biol Cell 14: 3470–3481PubMedCrossRefGoogle Scholar
  27. 27.
    Sandau KB, Zhou J, Kietzmann T, Brune B (2001) Regulation of the hypoxia-inducible factor lalpha by the inflammatory mediators nitric oxide and tumor necrosis factor-alpha in contrast to desferroxamine and phenylarsine oxide. J Biol Chem 276: 39805–39811PubMedCrossRefGoogle Scholar
  28. 28.
    Zhou J, Fandrey J, Schumann J, Tiegs G, Brune B (2003) NO and TNF-alpha released from activated macrophages stabilize HIF-1alpha in resting tubular LLC-PK1 cells. Am J Physiol Cell Physiol 284: C439–446PubMedGoogle Scholar
  29. 29.
    Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E (2003) VEGF expression in human macrophages is NF-κB-dependent: Studies using adenoviruses expressing the endogenous NF-κB inhibitor IκBa and a kinase defective form of the IκB kinase 2. J Cell Sci 116: 665–674PubMedCrossRefGoogle Scholar
  30. 30.
    Janossy G, Panayi G, Duke O, Bofill M, Poulter LW, Goldstein G (1981) Rheumatoid arthritis: A disease of T-lymphocyte macrophage immunoregulation. Lancet 2: 839–842PubMedCrossRefGoogle Scholar
  31. 31.
    Cush JJ, Lipsky PE (1988) Phenotypic analysis of synovial tissue and peripheral blood lymphocytes isolated from patients with rheumatoid arthritis. Arthritis Rheum 31: 1230–1238PubMedCrossRefGoogle Scholar
  32. 32.
    Lindblad S, Hedfors E (1985) Intraarticular variation in synovitis. Local macroscopic and microscopic signs of inflammatory activity are significantly correlated. Arthritis Rheum 28: 977–986PubMedCrossRefGoogle Scholar
  33. 33.
    Walsh DA (1999) Angiogenesis and arthritis. Rheumatology (Oxford) 38: 103–112CrossRefGoogle Scholar
  34. 34.
    Koch AE (2003) Angiogenesis as a target in rheumatoid arthritis. Ann Rheum Dis 62(Suppl 2): ii60–67PubMedGoogle Scholar
  35. 35.
    FitzGerald O, Bresnihan B (1995) Synovial membrane cellularity and vascularity. Ann Rheum Dis 54: 511–515PubMedCrossRefGoogle Scholar
  36. 36.
    Taylor PC (2005) Serum vascular markers and vascular imaging in assessment of rheu matoid arthritis disease activity and response to therapy. Rheumatology (Oxford) 44: 721–728CrossRefGoogle Scholar
  37. 37.
    Rooney M, Condell D, Quinlan W, Daly L, Whelan M, Feighery C, Bresnihan B (1988) Analysis of the histologic variation of synovitis in rheumatoid arthritis. Arthritis Rheum 31: 956–963PubMedCrossRefGoogle Scholar
  38. 38.
    Ceponis A, Konttinen YT, Imai S, Tamulaitiene M, Li TF, Xu JW, Hietanen J, Santavirta S, Fassbender HG (1998) Synovial lining, endothelial and inflammatory mononuclear cell proliferation in synovial membranes in psoriatic and reactive arthritis: A comparative quantitative morphometric study. Br J Rheumatol 37: 170–178PubMedCrossRefGoogle Scholar
  39. 39.
    Walsh DA, Wade M, Mapp PI, Blake DR (1998) Focally regulated endothelial proliferation and cell death in human synovium. Am J Pathol 152: 691–702PubMedGoogle Scholar
  40. 40.
    Sivakumar B, Harry LE, Paleolog EM (2004) Modulating angiogenesis: More vs. less. JAMA 292: 972–977PubMedCrossRefGoogle Scholar
  41. 41.
    Ballara SC, Miotla JM, Paleolog EM (1999) New vessels, new approaches: Angiogenesis as a therapeutic target in musculoskeletal disorders. Int J Exp Pathol 80: 235–250PubMedCrossRefGoogle Scholar
  42. 42.
    Sano H, Engleka K, Mathern P, Hla T, Crofford LJ, Remmers EF, Jelsema CL, Goldmuntz E, Maciag T, Wilder RL (1993) Coexpression of phosphotyrosine-containing proteins, platelet-derived growth factor-B, and fibroblast growth factor-1 in situ in synovial tissues of patients with rheumatoid arthritis and Lewis rats with adjuvant or streptococcal cell wall arthritis. J Clin Invest 91: 553–565PubMedCrossRefGoogle Scholar
  43. 43.
    Remmers EF, Sano H, Lafyatis R, Case JP, Kumkumian GK, Hla T, Maciag T, Wilder RL (1991) Production of platelet derived growth factor B chain (PDGF-B/c-sis) mRNA and immunoreactive PDGF B-like polypeptide by rheumatoid synovium: Coexpression with heparin binding acidic fibroblast growth factor-1. J Rheumatol 18: 7–13PubMedGoogle Scholar
  44. 44.
    Koch AE, Halloran MM, Hosaka S, Shah MR, Haskell CJ, Baker SK, Panos RJ, Haines GK, Bennett GL, Pope RM et al. (1996) Hepatocyte growth factor. A cytokine mediating endothelial migration in inflammatory arthritis. Arthritis Rheum 39: 1566–1575PubMedCrossRefGoogle Scholar
  45. 45.
    Fava RA, Hunt JA, Yeo KT, Brown F, Berse B (1995) Induction of vascular permeability factor (vascular endothelial growth factor) by TGFβ in synovial fibroblasts. Arthritis Rheum 38: S343CrossRefGoogle Scholar
  46. 46.
    Koch AE, Harlow LA, Haines GK, Amento EP, Unemori EN, Wong WL, Pope RM, Ferrara N (1994) Vascular endothelial growth factor: A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol 152: 4149–4156PubMedGoogle Scholar
  47. 47.
    Lee SS, Joo YS, Kim WU, Min DJ, Min JK, Park SH, Cho CS, Kim HY (2001) Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin Exp Rheumatol 19: 321–324PubMedGoogle Scholar
  48. 48.
    Fava RA, Olsen NJ, Spencer-Green G, Yeo KT, Yeo TK, Berse B, Jackman RW, Senger DR, Dvořak HF, Brown LF (1994) Vascular permeability factor/endothelial growth factor (VPF/VEGF): Accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med 180: 341–346PubMedCrossRefGoogle Scholar
  49. 49.
    Paleolog EM, Young S, Stark AC, McCloskey RV, Feldmann M, Maini RN (1998) Modulation of angiogeni vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis Rheum 41: 1258–1263PubMedCrossRefGoogle Scholar
  50. 50.
    Ballara SC, Taylor PC, Reusch P, Marme D, Feldmann M, Maini RN, Paleolog EM (2001) Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum 44: 2055–2064PubMedCrossRefGoogle Scholar
  51. 51.
    Ikeda M, Hosoda Y, Hirose S, Okada Y, Ikeda E (2000) Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR, and neuropilin-1 in synovial tissues of rheumatoid arthritis. J Pathol 191: 426–433PubMedCrossRefGoogle Scholar
  52. 52.
    Pfander D, Kortje D, Zimmermann R, Weseloh G, Kirsch T, Gesslein M, Cramer T, Swoboda B (2001) Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints. Ann Rheum Dis 60: 1070–1073PubMedCrossRefGoogle Scholar
  53. 53.
    Giatromanolaki A, Sivridis E, Athanassou N, Zois E, Thorpe PE, Brekken R, Gatter KC, Harris AL, Koukourakis IM, Koukourakis MI (2001) The angiogenic pathway “vascular endothelial growth factor/flk-1(KDR)-receptor” in rheumatoid arthritis and osteoarthritis. J Pathol 194: 101–108PubMedCrossRefGoogle Scholar
  54. 54.
    Enomoto H, Inoki I, Komiya K, Shiomi T, Ikeda E, Obata K, Matsumoto H, Toyama Y, Okada Y (2003) Vascular endothelial growth factor isoforms and their receptors are expressed in human osteoarthritic cartilage. Am J Pathol 162: 171–181PubMedGoogle Scholar
  55. 55.
    Pufe T, Petersen W, Tillmann B, Mentlein R (2001) The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum 44: 1082–1088PubMedCrossRefGoogle Scholar
  56. 56.
    Distler JH, Wenger RH, Gassmann M, Kurowska M, Hirth A, Gay S, Distler O (2004) Physiologic responses to hypoxia and implications for hypoxia-inducible factors in the pathogenesis of rheumatoid arthritis. Arthritis Rheum 50: 10–23PubMedCrossRefGoogle Scholar
  57. 57.
    Lund-Olesen K (1970) Oxygen tension in synovial fluids. Arthritis Rheum 13: 769–776PubMedCrossRefGoogle Scholar
  58. 58.
    Etherington PJ, Winlove P, Taylor P, Paleolog E, Miotla JM (2002) VEGF release is associated with reduced oxygen tensions in experimental inflammatory arthritis. Clin Exp Rheumatol 20: 799–805PubMedGoogle Scholar
  59. 59.
    Hitchon C, Wong K, Ma G, Reed J, Little D, El-Gabalawy H (2002) Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 46: 2587–2597PubMedCrossRefGoogle Scholar
  60. 60.
    Hollander AP, Corke KP, Freemont AJ, Lewis CE (2001) Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium: Implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum 44: 1540–1544PubMedCrossRefGoogle Scholar
  61. 61.
    Peters CL, Morris CJ, Mapp PI, Blake DR, Lewis CE, Winrow VR (2004) The transcription factors hypoxia-inducible factor 1alpha and Ets-1 colocalize in the hypoxic synovium of inflamed joints in adjuvant-induced arthritis. Arthritis Rheum 50: 291–296PubMedCrossRefGoogle Scholar
  62. 62.
    Giatromanolaki A, Sivridis E, Maltezos E, Athanassou N, Papazoglou D, Gatter KC, Harris AL, Koukourakis MI (2003) Upregulated hypoxia inducible factor-1alpha and-2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 5: R193–201PubMedCrossRefGoogle Scholar
  63. 63.
    Berse B, Hunt JA, Diegel RJ, Morganelli P, Yeo K, Berown F, Fava RA (1999) Hypoxia augments cytokine (transforming growth factor-beta (TGF-beta) and IL-1)-induced vascular endothelial growth factor secretion by human synovial fibroblasts. Clin Exp Immunol 115: 176–182PubMedCrossRefGoogle Scholar
  64. 64.
    Bottomley MJ, Webb NJ, Watson CJ, Holt L, Bukhari M, Denton J, Freemont AJ, Brenchley PE (2000) Placenta growth factor (PIGF) induces vascular endothelial growth factor (VEGF) secretion from mononuclear cells and is co-expressed with VEGF in synovial fluid. Clin Exp Immunol 119: 182–188PubMedCrossRefGoogle Scholar
  65. 65.
    Mould AW, Tonks ID, Cahill MM, Pettit AR, Thomas R, Hayward NK, Kay GF (2003) Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis. Arthritis Rheum 48: 2660–2669PubMedCrossRefGoogle Scholar
  66. 66.
    Xu H, Edwards J, Banerji S, Prevo R, Jackson DG, Athanasou NA (2003) Distribution of lymphatic vessels in normal and arthritic human synovial tissues. Ann Rheum Dis 62: 1227–1229PubMedCrossRefGoogle Scholar
  67. 67.
    Paavonen K, Mandelin J, Partanen T, Jussila L, Li TF, Ristimaki A, Alitalo K, Konttinen YT (2002) Vascular endothelial growth factors C and D and their VEGFR-2 and 3 receptors in blood and lymphatic vessels in healthy and arthritic synovium. J Rheumatol 29: 39–45PubMedGoogle Scholar
  68. 68.
    Wauke K, Nagashima M, Ishiwata T, Asano G, Yoshino S (2002) Expression and localization of vascular endothelial growth factor-C in rheumatoid arthritis synovial tissue. J Rheumatol 29: 34–38PubMedGoogle Scholar
  69. 69.
    Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui TG, Sugiono M, Waine E, Perrin R et al. (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: Mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64: 7822–7835PubMedCrossRefGoogle Scholar
  70. 70.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137PubMedCrossRefGoogle Scholar
  71. 71.
    Kusada J, Otsuka T, Matsui N, Hirano T, Asai K, Kato T (1993) Immuno-reactive human epidermal growth factor (h-EGF) in rheumatoid synovial fluids. Nippon Seikeigeka Gakkai Zasshi 67: 859–865PubMedGoogle Scholar
  72. 72.
    Farahat MN, Yanni G, Poston R, Panayi GS (1993) Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann Rheum Dis 52: 870–875PubMedCrossRefGoogle Scholar
  73. 73.
    Satoh K, Kikuchi S, Sekimata M, Kabuyama Y, Homma MK, Homma Y (2001) Involvement of ErbB-2 in rheumatoid synovial cell growth. Arthritis Rheum 44: 260–265PubMedCrossRefGoogle Scholar
  74. 74.
    Scott BB, Zaratin PF, Colombo A, Hansbury MJ, Winkler JD, Jackson JR (2002) Constitutive expression of angiopoietin-1 and −2 and modulation of their expression by inflammatory cytokines in rheumatoid arthritis synovial fibroblasts. J Rheumatol 29: 230–239PubMedGoogle Scholar
  75. 75.
    Gravallese EM, Pettit AR, Lee R, Madore R, Manning C, Tsay A, Gaspar J, Goldring MB, Goldring SR, Oettgen P (2003) Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumour necrosis factor alpha. Ann Rheum Dis 62: 100–107PubMedCrossRefGoogle Scholar
  76. 76.
    DeBusk LM, Chen Y, Nishishita T, Chen J, Thomas JW, Lin PC (2003) Tie2 receptor tyrosine kinase, a major mediator of tumor necrosis factor alpha-induced angiogenesis in rheumatoid arthritis. Arthritis Rheum 48: 2461–2471PubMedCrossRefGoogle Scholar
  77. 77.
    Shahrara S, Volin MV, Connors MA, Haines GK, Koch AE (2002) Differential expression of the angiogenic Tie receptor family in arthritic and normal synovial tissue. Arthritis Res 4: 201–208PubMedCrossRefGoogle Scholar
  78. 78.
    Fearon U, Griosios K, Fraser A, Reece R, Emery P, Jones PF, Veale DJ (2003) Angiopoietins, growth factors, and vascular morphology in early arthritis. J Rheumatol 30: 260–268PubMedGoogle Scholar
  79. 79.
    Breier G, Clauss M, Risau W (1995) Coordinate expression of vascular endothelial growth factor receptor-1 (flt-1) and its ligand suggests a paracrine regulation of murine vascular development. Dev Dyn 204: 228–239PubMedGoogle Scholar
  80. 80.
    Matthews W, Jordan CT, Gavin M, Jenkins NA, Copeland NG, Lemischka IR (1991) A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc Natl Acad Sci USA 88: 9026–9030PubMedCrossRefGoogle Scholar
  81. 81.
    Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J (1993) Flk-1, an flt-related receptor tyrosine kinase is an early marker for, endothelial cell precursors. Development 118: 489–498PubMedGoogle Scholar
  82. 82.
    Ruger B, Giurea A, Wanivenhaus AH, Zehetgruber H, Hollemann D, Yanagida G, Groger M, Petzelbauer P, Smolen JS, Hoecker P et al. (2004) Endothelial precursor cells in the synovial tissue of patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum 50: 2157–2166PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Petec C. Taylor
    • 1
  1. 1.Kennedy Institute of Rheumatology, Faculty of MedicineImperlal CollegeLondonUK

Personalised recommendations