Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks and assists in elucidating antibiotic mechanisms of action

  • Julia E. Bandow
  • Michael Hecker
Part of the Progress in Drug Research book series (PDR, volume 64)


Proteomic profiling provides a global view of the protein composition of the cell. In contrast to the static nature of the genome sequence, which provides the blueprint for all protein-based cellular building blocks, the proteome is highly dynamic. The protein composition is constantly adjusting to facilitate survival, growth, and reproduction in an ever-changing environment. In a quest to understand the regulation of cellular networks in bacteria and the role of individual proteins in the adaptation process, the proteomic response to stress and starvation was analyzed in wild-type and mutant strains. The knowledge derived from these proteomic studies was applied to investigating the bacterial response to antibiotics. It was found that proteomics presents a powerful tool for hypothesis generation regarding antibiotic mechanism of action.


Bacillus Subtilis Protein Spot Cellular Network Antimicrob Agent Reference Compendium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7: 579–586PubMedCrossRefGoogle Scholar
  2. 2.
    Wachlin G, Hecker M (1984) Protein biosynthesis following heat shock in Bacillus subtilis. Z Allg Mikrobiol 24: 397–401 (German)PubMedGoogle Scholar
  3. 3.
    Richter A, Hecker M (1986) Heat-shock proteins in Bacillus subtilis: a two-dimensional electrophoresis study. FEMS Microbiol Lett 36: 69–71CrossRefGoogle Scholar
  4. 4.
    O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021PubMedGoogle Scholar
  5. 5.
    Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. Humangenetik 26: 231–243PubMedGoogle Scholar
  6. 6.
    Buttner K, Bernhardt J, Scharf C, Schmid R, Mader U, Eymann C, Antelmann H, Volker A, Volker U, Hecker M (2001) A comprehensive two-dimensional map of cytosolic proteins of Bacillus subtilis. Electrophoresis 22: 2908–2935PubMedCrossRefGoogle Scholar
  7. 7.
    Eymann C, Dreisbach A, Albrecht D, Bernhardt J, Becher D, Gentner S, Tam le T, Buttner K, Buurman G, Scharf C et al (2004) A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4: 2849–2876PubMedCrossRefGoogle Scholar
  8. 8.
    Bernhardt J, Buttner K, Scharf C, Hecker M (1999) Dual channel imaging of two-dimensional electropherograms in Bacillus subtilis. Electrophoresis 20: 2225–2240PubMedCrossRefGoogle Scholar
  9. 9.
    Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA 90: 5011–5015PubMedCrossRefGoogle Scholar
  10. 10.
    Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70: 437–473PubMedCrossRefGoogle Scholar
  11. 11.
    Volker U, Engelmann S, Maul B, Riethdorf S, Volker A, Schmid R, Mach H, Hecker M (1994) Analysis of the induction of general stress proteins of Bacillus subtilis. Microbiology 140: 741–752PubMedCrossRefGoogle Scholar
  12. 12.
    Antelmann H, Bernhardt J, Schmid R, Mach H, Volker U, Hecker M (1997) First steps from a two-dimensional protein index towards a response-regulation map of Bacillus subtilis. Electrophoresis 18: 1451–1463PubMedCrossRefGoogle Scholar
  13. 13.
    Bernhardt J, Weibezahn J, Scharf C, Hecker M (2003) Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res 13: 224–237PubMedCrossRefGoogle Scholar
  14. 14.
    Zuber U, Schuman W (1994) CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176: 1359–1363PubMedGoogle Scholar
  15. 15.
    Benson AK, Haldenwang WG (1993) The sigmaB-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J Bacteriol 175: 1929–1935PubMedGoogle Scholar
  16. 16.
    Kruger E, Hecker M (1998) The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 180: 6681–6688PubMedGoogle Scholar
  17. 17.
    Derre I, Rapoport G, Masdek T (2000) The CtsR regulator of stress is active as a dimer and specifically degraded in vivo at 37 degrees C. Mol Microbiol 38: 335–347PubMedCrossRefGoogle Scholar
  18. 18.
    Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM (2002) A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol 184: 5661–5671PubMedCrossRefGoogle Scholar
  19. 19.
    Kruger E, Msadek T, Hecker M (1996) Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol Microbiol 20: 713–723PubMedCrossRefGoogle Scholar
  20. 20.
    Hecker M, Völker U (1998) Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the σ B regulon. Mol Microbiol 29: 1129–1136PubMedCrossRefGoogle Scholar
  21. 21.
    Brody MS, Vijay K, Price CW (2001) Catalytic function of an alpha/beta hydrolase is required for energy stress activation of the sigma(B) transcription factor in Bacillus subtilis. J Bacteriol 183: 6422–6428PubMedCrossRefGoogle Scholar
  22. 22.
    Eymann C, Homuth G, Scharf C, Hecker M (2002) Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 184: 2500–2520PubMedCrossRefGoogle Scholar
  23. 23.
    Koburger T, Weibezahn J, Bernhardt J, Homuth G, Hecker M (2005) Genome-wide mRNA profiling in glucose starved Bacillus subtilis cells. Mol Genet Genomics 274: 1–12PubMedCrossRefGoogle Scholar
  24. 24.
    VanBogelen RA, Neidhardt FC (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc Natl Acad Sci USA 87: 5589–5593PubMedCrossRefGoogle Scholar
  25. 25.
    VanBogelen RA, Schiller E, Thomas JD, Neidhardt FC (1999) Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis 20: 2149–2159PubMedCrossRefGoogle Scholar
  26. 26.
    Mosterz J, Scharf C, Hecker M, Homuth (2004) Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiol 150: 497–512CrossRefGoogle Scholar
  27. 27.
    Leichert LI, Scharf C, Hecker M (2003) Global characterization of disulfide stress in Bacillus subtilis. J Bacteriol 185: 1967–1975PubMedCrossRefGoogle Scholar
  28. 28.
    Leichert LI, Jakob U (2004) Protein thiol modifications visualized in vivo. PloS Biol 2: e333PubMedCrossRefGoogle Scholar
  29. 29.
    Hochgraefe F, Mostertz J, Albrecht D, Hecker M (2005) Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis. Mol Microbiol 58: 409–425CrossRefGoogle Scholar
  30. 30.
    Yang Y, Loscalzo J (2005) S-nitrosoprotein formation and localization in endothelial cells. Proc Natl Acad Sci USA 102: 117–122PubMedCrossRefGoogle Scholar
  31. 31.
    Rhee KY, Erdjument-Bromage H, Tempst P, Nathan CF (2005) S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci USA 102: 467–472PubMedCrossRefGoogle Scholar
  32. 32.
    Levine A, Vannier F, Absalon C, Kuhn L, Jackson P, Scrivener E, Labas V, Vinh J, Courtney P, Garin J et al (2006) Analysis of the dynamic Bacillus subtilis Ser/Thr/Tyr phosphoproteome implicated in a wide variety of cellular processes. Proteomics 6: 2157–2173PubMedCrossRefGoogle Scholar
  33. 33.
    Mills SD (2003) The role of genomics in antimicrobial discovery. J Antimicrob Chemother 51: 749–752PubMedCrossRefGoogle Scholar
  34. 34.
    Freiberg C, Brotz-Oesterhelt H (2005b) Functional genomics in antibacterial drug discovery. Drug Discovery Today 1: 927–935CrossRefGoogle Scholar
  35. 35.
    Freiberg C, Fisher HP, Brunner NA (2005a) Discovering the mechanism of action of novel antibacterial agents through transcriptional profiling of conditional mutants. Antimicrob Agents Chemother 49: 749–759PubMedCrossRefGoogle Scholar
  36. 36.
    Brötz-Oesterhelt H, Bandow JE, Labischinski H (2005) Bacterial proteomics and its role in antibacterial drug discovery. Mass Spectrom Rev 24: 549–565PubMedCrossRefGoogle Scholar
  37. 37.
    Freiberg C, Brotz-Oesterhelt H, Labischinski H (2004) The impact of transcriptome and proteome analyses on antibiotic drug discovery. Curr Opin Microbiol 7: 451–459PubMedCrossRefGoogle Scholar
  38. 38.
    Bandow J, Brötz H, Leichert LIO, Labischinski H, Hecker M (2003) Proteomic approaches to understanding antibiotic action. Antimicrob Agents Chemother 47: 948–955PubMedCrossRefGoogle Scholar
  39. 39.
    Bandow JE, Becher D, Buttner K, Hochgrafe F, Freiberg C, Brötz H, Hecker M (2003). The role of peptide deformylase in protein biosynthesis: a proteomic study. Proteomics 3: 299–306PubMedCrossRefGoogle Scholar
  40. 40.
    Brötz-Oesterhelt H, Beyer D, Kroll HP, Schroeder W, Hinzen B, Raddatz S, Paulsen H, Bandow JE, Sahl HG, Labischinski H (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11: 1082–1087PubMedCrossRefGoogle Scholar
  41. 41.
    Beyer D, Kroll HP, Endermann R, Schiffer G, Siegel S, Bauser M, Pohlmann J, Brands M, Ziegelbauer K, Haebich D et al (2004) New class of bacterial phenylalanyl-tRNA synthetase inhibitors with high potency and broad-spectrum activity. Antimicrob Agents Chemother 48: 525–532PubMedCrossRefGoogle Scholar
  42. 42.
    Boddecker N, Bahador G, Gibbs C, Mabery E, Wolf J, Xu L, Watson J (2002) Characterization of a novel antibacterial agent that inhibits bacterial translation. RNA 8: 1120–1128CrossRefGoogle Scholar
  43. 43.
    Apfel CM, Locher H, Evers S, Takacs B, Hubschwerlen C, Pirson W, Page MG, Keck W (2001) Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob Agents Chemother 45: 1058–1064PubMedCrossRefGoogle Scholar
  44. 44.
    Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279: 40174–40184PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Julia E. Bandow
    • 1
  • Michael Hecker
    • 2
  1. 1.Pfizer Global Research and DevelopmentPfizer Inc.Ann ArborUSA
  2. 2.Institute for MicrobiologyErnst-Moritz-Arndt Universität GreifswaldGreifswaldGermany

Personalised recommendations