Chemical genetics: An evolving toolbox for target identification and lead optimization

  • Helena I. Boshoff
  • Cynthia S. Dowd
Part of the Progress in Drug Research book series (PDR, volume 64)


Chemical genetics combines chemistry with biology as a means of exploring the function of unknown proteins or identifying the proteins responsible for a particular phenotype. Chemical genetics is thus a valuable tool in the identification of novel drug targets. This chapter describes the application of chemical genetics in traditional and systems-based approaches to drug target discovery and the tools/approaches that appear most promising for guiding future pharmaceutical development.


Small Molecule Lead Optimization Chem Biol Small Molecule Ligand Chemical Genetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403PubMedCrossRefGoogle Scholar
  2. 2.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921PubMedCrossRefGoogle Scholar
  3. 3.
    Mawuenyega KG, Forst CV, Dobos KM, Belisle JT, Chen J, Bradbury EM, Bradbury AR, Chen X (2005) Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol Biol Cell 16: 396–404PubMedCrossRefGoogle Scholar
  4. 4.
    Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, Wojcik J, Schachter V et al (2001) The protein-protein interaction map of Helicobacter pylori. Nature 409: 211–215PubMedCrossRefGoogle Scholar
  5. 5.
    LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R, Hesselberth JR, Schoenfeld LW, Ota I, Sahasrabudhe S, Kurschner C et al (2005) A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438: 103–107PubMedCrossRefGoogle Scholar
  6. 6.
    Malek JA, Wierzbowski JM, Tao W, Bosak SA, Saranga DJ, Doucette-Stamm L, Smith DR, McEwan PJ, McKernan KJ (2004) Protein interaction mapping on a functional shotgun sequence of Rickettsia sibirica. Nucleic Acids Res 32: 1059–1064PubMedCrossRefGoogle Scholar
  7. 7.
    Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286: 2165–2169PubMedCrossRefGoogle Scholar
  8. 8.
    Akerley BJ, Rubin EJ, Novick VL, Amaya K, Judson N, Mekalanos JJ (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci USA 99: 966–971PubMedCrossRefGoogle Scholar
  9. 9.
    Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77–84PubMedCrossRefGoogle Scholar
  10. 10.
    Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100: 12989–12994PubMedCrossRefGoogle Scholar
  11. 11.
    Blokpoel MC, Smeulders MJ, Hubbard JA, Keer J, Williams HD (2005) Global analysis of proteins synthesized by Mycobacterium smegmatis provides direct evidence for physiological heterogeneity in stationary-phase cultures. J Bacteriol 187: 6691–6700PubMedCrossRefGoogle Scholar
  12. 12.
    Ehrt S, Guo XV, Hickey CM, Ryou M, Monteleone M, Riley LW, Schnappinger D (2005) Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res 33: e21PubMedCrossRefGoogle Scholar
  13. 13.
    Huang J, Zhu H, Haggarty SJ, Spring DR, Hwang H, Jin F, Snyder M, Schreiber SL (2004) Finding new components of the target of rapamycin (TOR) signaling network through chemical genetics and proteome chips. Proc Natl Acad Sci USA 101: 16594–16599PubMedCrossRefGoogle Scholar
  14. 14.
    Koeller KM, Haggarty SJ, Perkins BD, Leykin I, Wong JC, Kao MC, Schreiber SL (2003) Chemical genetic modifier screens: small molecule trichostatin suppressors as probes of intracellular histone and tubulin acetylation. Chem Biol 10: 397–410PubMedCrossRefGoogle Scholar
  15. 15.
    Haggarty SJ, Clemons PA, Wong JC, Schreiber SL (2004) Mapping chemical space using molecular descriptors and chemical genetics: deacetylase inhibitors. Comb Chem High Throughput Screen 7: 669–676PubMedGoogle Scholar
  16. 16.
    Chen J, Swamidass SJ, Dou Y, Bruand J, Baldi P (2005) ChemDB: a public database of small molecules and related chemoinformatics resources. Bioinformatics 21: 4133–4139PubMedCrossRefGoogle Scholar
  17. 17.
    Mitchison TJ (2005) Small-molecule screening and profiling by using automated microscopy. Chembiochem 6: 33–39PubMedCrossRefGoogle Scholar
  18. 18.
    Lokey RS (2003) Forward chemical genetics: progress and obstacles on the path to a new pharmacopoeia. Curr Opin Chem Biol 7: 91–96PubMedCrossRefGoogle Scholar
  19. 19.
    Clemons PA (2004) Complex phenotypic assays in high-throughput screening. Curr Opin Chem Biol 8: 334–338PubMedCrossRefGoogle Scholar
  20. 20.
    Wilson CJ, Si Y, Thompsons CM, Smellie A, Ashwell MA, Liu JF, Ye P, Yohannes D, Ng SC (2006) Identification of a small molecule that induces mitotic arrest using a simplified high-content screening assay and data analysis method. J Biomol Screen 11: 21–28PubMedCrossRefGoogle Scholar
  21. 21.
    Stockwell BR, Haggarty SJ, Schreiber SL (1999) High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving posttranslational modifications. Chem Biol 6: 71–83PubMedCrossRefGoogle Scholar
  22. 22.
    Peterson RT, Link BA, Dowling JE, Schreiber SL (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci USA 97: 12965–12969PubMedCrossRefGoogle Scholar
  23. 23.
    Khersonsky SM, Jung DW, Kang TW, Walsh DP, Moon HS, Jo H, Jacobson EM, Shetty V, Neubert TA, Chang YT (2003) Facilitated forward chemical genetics using a tagged triazine library and zebrafish embryo screening. J Am Chem Soc 125: 11804–11805PubMedCrossRefGoogle Scholar
  24. 24.
    den Hertog J (2005) Chemical genetics: Drug screens in Zebrafish. Biosci Rep 25: 289–297CrossRefGoogle Scholar
  25. 25.
    Milan DJ, Peterson TA, Ruskin JN, Peterson RT, MacRae CA (2003) Drugs that induce repolarization abnormalities cause bradycardia in zebrafish. Circulation 107: 1355–1358PubMedCrossRefGoogle Scholar
  26. 26.
    Bailey SN, Sabatini DM, Stockwell BR (2004) Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens. Proc Natl Acad Sci USA 101: 16144–16149PubMedCrossRefGoogle Scholar
  27. 27.
    Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277: 665–667PubMedCrossRefGoogle Scholar
  28. 28.
    Yura T, Ishihama A (1979) Genetics of bacterial RNA polymerases. Annu Rev Genet 13: 59–97PubMedCrossRefGoogle Scholar
  29. 29.
    Mitsopoulos G, Walsh DP, Chang YT (2004) Tagged library approach to chemical genomics and proteomics. Curr Opin Chem Biol 8: 26–32PubMedCrossRefGoogle Scholar
  30. 30.
    Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK506 is a cis-trans peptidyl-prolyl isomerase. Nature 341: 758–760PubMedCrossRefGoogle Scholar
  31. 31.
    Miller DK, Gillard JW, Vickers PJ, Sadowski S, Leveille C, Mancini JA, Charleson P, Dixon RA, Ford-Hutchinson AW, Fortin R et al (1990) Identification and isolation of a membrane protein necessary for leukotriene production. Nature 343: 278–281PubMedCrossRefGoogle Scholar
  32. 32.
    Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH (1989) A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature 341: 755–757PubMedCrossRefGoogle Scholar
  33. 33.
    Siekierka JJ, Staruch MJ, Hung SH, Sigal NH (1989) FK-506, a potent novel immunosuppressive agent, binds to a cytosolic protein which is distinct from the cyclosporin A-binding protein, cyclophilin. J Immunol 143: 1580–1583PubMedGoogle Scholar
  34. 34.
    Towbin H, Bair KW, DeCaprio JA, Eck MJ, Kim S, Kinder FR, Morollo A, Mueller DR, Schindler P, Song HK et al (2003) Proteomics-based target identification: bengamides as a new class of methionine aminopeptidase inhibitors. J BiolChem 278: 52964–52971Google Scholar
  35. 35.
    Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS, Hinshaw JC, Garnier P, Prestwich GD, Leonardson A et al (2004) Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116: 121–137PubMedCrossRefGoogle Scholar
  36. 36.
    Li X, Zolli-Juran M, Cechetto JD, Daigle DM, Wright GD, Brown ED (2004) Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem Biol 11: 1423–1430PubMedCrossRefGoogle Scholar
  37. 37.
    McPherson M, Yang Y, Hammond PW, Kreider BL (2002) Drug receptor identification from multiple tissues using cellular-derived mRNA display libraries. Chem Biol 9: 691–698PubMedCrossRefGoogle Scholar
  38. 38.
    Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279: 40174–40184PubMedCrossRefGoogle Scholar
  39. 39.
    Butcher RA, Schreiber SL (2005) Using genome-wide transcriptional profiling to elucidate small-molecule mechanism. Curr Opin Chem Biol 9: 25–30PubMedCrossRefGoogle Scholar
  40. 40.
    Kung C, Shokat KM (2005) Small-molecule kinase-inhibitor target assessment. Chembiochem 6: 523–526PubMedCrossRefGoogle Scholar
  41. 41.
    Burdine L, Kodadek T (2004) Target identification in chemical genetics: the (often) missing link. Chem Biol 11: 593–597PubMedCrossRefGoogle Scholar
  42. 42.
    Ranish JA, Yi EC, Leslie DM, Purvine SO, Goodlett DR, Eng J, Aebersold R (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33: 349–355PubMedCrossRefGoogle Scholar
  43. 43.
    Fantin VR, Berardi MJ, Scorrano L, Korsmeyer SJ, Leder P (2002) A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell 2: 29–42PubMedCrossRefGoogle Scholar
  44. 44.
    Torrance CJ, Agrawal V, Vogelstein B, Kinzler KW (2001) Use of isogenic human cancer cells for high-throughput screening and drug discovery. Nat Biotechnol 19: 940–945PubMedCrossRefGoogle Scholar
  45. 45.
    Simons A, Dafni N, Dotan I, Oron Y, Canaani D (2001) Establishment of a chemical synthetic lethality screen in cultured human cells. Genome Res 11: 266–273PubMedCrossRefGoogle Scholar
  46. 46.
    Khersonsky SM, Chang YT (2004) Strategies for facilitated forward chemical genetics. Chembiochem 5: 903–908PubMedCrossRefGoogle Scholar
  47. 47.
    Khersonsky SM, Chang YT (2004) Forward chemical genetics: library scaffold design. Comb Chem High Throughput Screen 7: 645–652PubMedGoogle Scholar
  48. 48.
    Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432: 846–854PubMedCrossRefGoogle Scholar
  49. 49.
    Nicolaou KC, Pfefferkorn JA, Barluenga S, Mitchell HJ, Roecker AJ, Cao G-Q (2000) Natural product-like combinatorial libraries based on privileged structures. 3. The “Libraries from Libraries” principle for diversity enhancement of benzopyran libraries. J Am Chem Soc 122: 9968–9976CrossRefGoogle Scholar
  50. 50.
    Nicolaou KC, Pfefferkorn JA, Mitchell HJ, Roecker AJ, Barluenga S, Cao G-Q, Affleck RL, Lillig JE (2000) Natural product-like combinatorial libraries based on privileged structures. 2. Construction of a 10,000-membered benzopyran library by directed split-and-pool chemistry using nanokans and optical encoding. J Am Chem Soc 122: 9954–9967CrossRefGoogle Scholar
  51. 51.
    Nicolaou KC, Pfefferkorn JA, Roecker AJ, Cao G-Q, Barluenga S, Mitchell HJ (2000) Natural product-like combinatorial libraries based on privileged structures. 1. General Principles and solid-phase synthesis of benzopyrans. J Am Chem Soc 122: 9939–9953CrossRefGoogle Scholar
  52. 52.
    Tan DS, Foley MA, Stockwell BR, Shair MD, Shreiber SL (1999) Synthesis and preliminary evaluation of a library of polycyclic small molecules for use in chemical genetic assays. J Am Chem Soc 121: 9073–9087CrossRefGoogle Scholar
  53. 53.
    Gray NS, Wodicka L, Thunnissen AM, Norman TC, Kwon S, Espinoza FH, Morgan DO, Barnes G, LeClerc S, Meijer L et al (1998) Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281: 533–538PubMedCrossRefGoogle Scholar
  54. 54.
    Armstrong JI, Portley AR, Chang YT, Nierengarten DM, Cook BN, Bowman KG, Bishop A, Gray NS, Shokat KM, Schultz PG et al (2000) Discovery of carbohydrate sulfotransferase inhibitors from a kinase-directed library. Angew Chem Int Ed Engl 39: 1303–1306PubMedCrossRefGoogle Scholar
  55. 55.
    Verdugo DE, Cancilla MT, Ge X, Gray NS, Chang YT, Schultz PG, Negishi M, Leary JA, Bertozzi CR (2001) Discovery of estrogen sulfotransferase inhibitors from a purine library screen. J Med Chem 44: 2683–2686PubMedCrossRefGoogle Scholar
  56. 56.
    Wu X, Ding S, Ding Q, Gray NS, Schultz PG (2002) A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J Am Chem Soc 124: 14520–14521PubMedCrossRefGoogle Scholar
  57. 57.
    Chang YT, Wignall SM, Rosania GR, Gray NS, Hanson SR, Su AI, Merlie J Jr, Moon HS, Sangankar SB, Perez O et al (2001) Synthesis and biological evaluation of myoseverin derivatives: microtubule assembly inhibitors. J Med Chem 44: 4497–4500PubMedCrossRefGoogle Scholar
  58. 58.
    Rosania GR, Chang YT, Perez O, Sutherlin D, Dong H, Lockhart DJ, Schultz PG (2000) Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat Biotechnol 18: 304–308PubMedCrossRefGoogle Scholar
  59. 59.
    Chang Y-T, Choi J, Ding S, Prieschl EE, Baumruker T, Lee J-M, Chung S-K, Schultz PG (2002) The synthesis and biological characterization of a ceramide library. J Am Chem Soc 124: 1856–1857PubMedCrossRefGoogle Scholar
  60. 60.
    Kim SW, Hong CY, Lee K, Lee EJ, Koh JS (1998) Solid phase synthesis of benzyl-amine-derived sulfonamide library. Bioorg Med Chem Lett 8: 735–738PubMedCrossRefGoogle Scholar
  61. 61.
    Ryckebuscha A, Déprez-Poulaina R, Debreu-Fontainea M-A, Vandaelea R, Mourayb E, Grellierb P, Sergheraert C (2002) Parallel synthesis and anti-malarial activity of a sulfonamide library. Bioorg Med Chem Lett 12: 2595–2598CrossRefGoogle Scholar
  62. 62.
    Yokoi A, Kuromitsu J, Kawai T, Nagasu T, Sugi NH, Yoshimatsu K, Yoshino H, Owa T (2002) Profiling novel sulfonamide antitumor agents with cell-based phenotypic screens and array-based gene expression analysis. Mol Cancer Ther 1: 275–286PubMedGoogle Scholar
  63. 63.
    Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274: 1531–1534PubMedCrossRefGoogle Scholar
  64. 64.
    Olejniczak ET, Hajduk PJ, Marcotte PA, Nettesheim DG, Meadows RP, Edalji R, Holzman TF, Fesik SW (1997) Stromelysin inhibitors designed from weakly bound fragments: effects of linking and cooperativity. J AmChem Soc 119: 5828–5832CrossRefGoogle Scholar
  65. 65.
    Hajduk PJ, Sheppard G, Nettesheim DG, Olejniczak ET, Shuker SB, Meadows RP, Steinman DH, Carrera J, Marcotte PA, Severin J et al (1997) Discovery of Potent nonpeptide inhibitors of stromelysin using SAR by NMR. J Am Chem Soc 119: 5818–5827CrossRefGoogle Scholar
  66. 66.
    Petros AM, Dinges J, Augeri DJ, Baumeister SA, Betebenner DA, Bures MG, Elmore SW, Hajduk PJ, Joseph MK, Landis SK et al (2006) Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. JMed Chem 49: 656–663CrossRefGoogle Scholar
  67. 67.
    Becattini B, Sareth S, Zhai D, Crowell KJ, Leone M, Reed JC, Pellecchia M (2004) Targeting apoptosis via chemical design: inhibition of bid-induced cell death by small organic molecules. Chem Biol 11: 1107–1117PubMedCrossRefGoogle Scholar
  68. 68.
    Fejzo J, Lepre CA, Peng JW, Bemis GW, Ajay, Murcko MA, Moore JM (1999) The SHAPES strategy: an NMR-based approach for lead generation in drug discovery. Chem Biol 6: 755–769PubMedCrossRefGoogle Scholar
  69. 69.
    Sem DS, Bertolaet B, Baker B, Chang E, Costache AD, Coutts S, Dong Q, Hansen M, Hong V, Huang X et al (2004) Systems-based design of bi-ligand inhibitors of oxidoreductases: filling the chemical proteomic toolbox. Chem Biol 11: 185–194PubMedCrossRefGoogle Scholar
  70. 70.
    Erlanson DA, Braisted AC, Raphael DR, Randal M, Stroud RM, Gordon EM, Wells JA (2000) Site-directed ligand discovery. Proc Natl Acad Sci USA 97: 9367–9372PubMedCrossRefGoogle Scholar
  71. 71.
    Maly DJ, Choong IC, Ellman JA (2000) Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. ProcNatl Acad Sci USA 97: 2419–2424CrossRefGoogle Scholar
  72. 72.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40: 2004–2021PubMedCrossRefGoogle Scholar
  73. 73.
    Lewis WG, Green LG, Grynszpan F, Radic Z, Carlier PR, Taylor P, Finn MG, Sharpless KB (2002) Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem Int Ed Engl 41: 1053–1057PubMedGoogle Scholar
  74. 74.
    Manetsch R, Krasiski A, Radi Z, Raushel J, Taylor P, Sharpless KB, Kolb HC (2004) In situ click chemistry: Enzyme inhibitors made to their own specifications. J Am Chem Soc 126: 12809–12818PubMedGoogle Scholar
  75. 75.
    Walsh DP, Chang YT (2004) Recent advances in small molecule microarrays: applications and technology. Comb Chem High Throughput Screen 7: 557–564PubMedGoogle Scholar
  76. 76.
    Koehler AN, Shamji AF, Schreiber SL (2003) Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. J AmChem Soc 125: 8420–8421CrossRefGoogle Scholar
  77. 77.
    Winssinger N, Damoiseaux R, Tully DC, Geierstanger BH, Burdick K, Harris JL (2004) PNA-encoded protease substrate microarrays. Chem Biol 11: 1351–1360PubMedCrossRefGoogle Scholar
  78. 78.
    Winssinger N, Ficarro S, Schultz PG, Harris JL (2002) Profiling protein function with small molecule microarrays. Proc Natl Acad Sci USA 99: 11139–11144PubMedCrossRefGoogle Scholar
  79. 79.
    Annis DA, Nazef N, Chuang CC, Scott MP, Nash HM (2004) A general technique to rank protein-ligand binding affinities and determine allosteric versus direct binding site competition in compound mixtures. J Am Chem Soc 126: 15495–15503PubMedGoogle Scholar
  80. 80.
    Lewis LM, Engle LJ, Pierceall WE, Hughes DE, Shaw KJ (2004) Affinity capillary electrophoresis for the screening of novel antimicrobial targets. J Biomol Screen 9: 303–308PubMedCrossRefGoogle Scholar
  81. 81.
    Juris SJ, Shah K, Shokat K, Dixon JE, Vacratsis PO (2006) Identification of otubain 1 as a novel substrate for the Yersinia protein kinase using chemical genetics and mass spectrometry. FEBS Lett 580: 179–183PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Helena I. Boshoff
    • 1
  • Cynthia S. Dowd
    • 1
  1. 1.National Institutes of HealthRockvilleUSA

Personalised recommendations