Advertisement

Genomics of host-pathogen interactions

  • Dirk Schnappinger
Part of the Progress in Drug Research book series (PDR, volume 64)

Abstract

The complete sequences of hundreds of microbial genomes have provided drug discovery pipelines with thousands of new potential drug targets. Their availability has also stimulated the development of a variety of innovative approaches that allow functional studies to be performed on the entire genome of an organism. This chapter describes how these approaches have been applied to the analysis of host-pathogen interactions and discusses how such studies might facilitate the development of new antibiotics.

Keywords

Mycobacterium Tuberculosis Mycobacterium Bovis Liquid Broth Iron Acquisition Gene Stool Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512PubMedCrossRefGoogle Scholar
  2. 2.
    Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270: 484–487PubMedCrossRefGoogle Scholar
  3. 3.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470PubMedCrossRefGoogle Scholar
  4. 4.
    Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292: 1096–1099PubMedCrossRefGoogle Scholar
  5. 5.
    Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54: 641–679PubMedCrossRefGoogle Scholar
  6. 6.
    Brosch R, Pym AS, Gordon SV, Cole ST (2001) The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol 9: 452–458PubMedCrossRefGoogle Scholar
  7. 7.
    Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68: 560–602, table of contentsPubMedCrossRefGoogle Scholar
  8. 8.
    Schoolnik GK (2002) Functional and comparative genomics of pathogenic bacteria. Curr Opin Microbiol 5: 20–26PubMedCrossRefGoogle Scholar
  9. 9.
    Whittam TS, Bumbaugh AC (2002) Inferences from whole-genome sequences of bacterial pathogens. Curr Opin Genet Dev 12: 719–725PubMedCrossRefGoogle Scholar
  10. 10.
    Fitzgerald JR, Musser JM (2001) Evolutionary genomics of pathogenic bacteria. Trends Microbiol 9: 547–553PubMedCrossRefGoogle Scholar
  11. 11.
    Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102: 13950–13955PubMedCrossRefGoogle Scholar
  12. 12.
    Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R et al (2005) Identification of a universal Group B streptococcus vaccine by multiple genome screen. Science 309: 148–150PubMedCrossRefGoogle Scholar
  13. 13.
    Hastings RC, Gillis TP, Krahenbuhl JL, Franzblau SG (1988) Leprosy. Clin Microbiol Rev 1: 330–348PubMedGoogle Scholar
  14. 14.
    Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garnier T, Churcher C, Harris D et al (2001) Massive gene decay in the leprosy bacillus. Nature 409: 1007–1011PubMedCrossRefGoogle Scholar
  15. 15.
    Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UC, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140PubMedCrossRefGoogle Scholar
  16. 16.
    Ogata H, Audic S, Renesto-Audiffren P, Fournier PE, Barbe V, Samson D, Roux V, Cossart P, Weissenbach J, Claverie JM et al (2001) Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293: 2093–2098PubMedCrossRefGoogle Scholar
  17. 17.
    Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q et al (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754–759PubMedCrossRefGoogle Scholar
  18. 18.
    Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E et al (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307: 223–227PubMedCrossRefGoogle Scholar
  19. 19.
    Manjunatha UH, Boshoff H, Dowd CS, Zhang L, Albert TJ, Norton JE, Daniels L, Dick T, Pang SS, Barry CE 3rd (2006) Identification of a nitroimidazo-oxazinespecific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103: 431–436PubMedCrossRefGoogle Scholar
  20. 20.
    Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM (1999) Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284: 1520–1523PubMedCrossRefGoogle Scholar
  21. 21.
    Mostowy S, Inwald J, Gordon S, Martin C, Warren R, Kremer K, Cousins D, Behr MA (2005) Revisiting the evolution of Mycobacterium bovis. J Bacteriol 187: 6386–6395PubMedCrossRefGoogle Scholar
  22. 22.
    Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178: 1274–1282PubMedGoogle Scholar
  23. 23.
    Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46: 709–717PubMedCrossRefGoogle Scholar
  24. 24.
    Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M et al (2003) The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA 100: 12420–12425PubMedCrossRefGoogle Scholar
  25. 25.
    Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S, Behr MA, Sherman DR (2003) Deletion of RD1 from Mycobacterium tuberculosismimics bacille Calmette-Guerin attenuation. J InfectDis 187: 117–123CrossRefGoogle Scholar
  26. 26.
    Guinn KM, Hickey MJ, Mathur SK, Zakel KL, Grotzke JE, Lewinsohn DM, Smith S, Sherman DR (2004) Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol 51: 359–370PubMedCrossRefGoogle Scholar
  27. 27.
    Stanley SA, Raghavan S, Hwang WW, Cox JS (2003) Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA 100: 13001–13006PubMedCrossRefGoogle Scholar
  28. 28.
    Wards BJ, de Lisle GW, Collins DM (2000) An esat6 knockout mutant of Mycobacterium bovis produced by homologous recombination will contribute to the development of a live tuberculosis vaccine. Tuber Lung Dis 80: 185–189PubMedCrossRefGoogle Scholar
  29. 29.
    Tsolaki AG, Hirsh AE, DeRiemer K, Enciso JA, Wong MZ, Hannan M, Goguet de la Salmoniere YO, Aman K, Kato-Maeda M, Small PM (2004) Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci USA 101: 4865–4870PubMedCrossRefGoogle Scholar
  30. 30.
    Kato-Maeda M, Rhee JT, Gingeras TR, Salamon H, Drenkow J, Smittipat N, Small PM (2001) Comparing genomes within the species Mycobacterium tuberculosis. Genome Res 11: 547–554PubMedCrossRefGoogle Scholar
  31. 31.
    Ernst PB, Gold BD (2000) The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol 54: 615–640PubMedCrossRefGoogle Scholar
  32. 32.
    Salama N, Guillemin K, McDaniel TK, Sherlock G, Tompkins L, Falkow SA (2000) Whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc Natl Acad Sci USA 97: 14668–14673PubMedCrossRefGoogle Scholar
  33. 33.
    Bourzac KM, Guillemin K (2005) Helicobacter pylori-host cell interactions mediated by type IV secretion. Cell Microbiol 7: 911–919PubMedCrossRefGoogle Scholar
  34. 34.
    Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL et al (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397: 176–180PubMedCrossRefGoogle Scholar
  35. 35.
    Nilsson C, Sillen A, Eriksson L, Strand ML, Enroth H, Normark S, Falk P, Engstrand L (2003) Correlation between cag pathogenicity island composition and Helicobacter pylori-associated gastroduodenal disease. Infect Immun 71: 6573–6581PubMedCrossRefGoogle Scholar
  36. 36.
    Israel DA, Salama N, Krishna U, Rieger UM, Atherton JC, Falkow S, Peek RM (2001) Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc Natl Acad Sci USA 98: 14625–14630PubMedCrossRefGoogle Scholar
  37. 37.
    Joyce EA, Chan K, Salama NR, Falkow S (2002) Redefining bacterial populations: a post-genomic reformation. Nat Rev Genet 3: 462–473PubMedGoogle Scholar
  38. 38.
    Solnick JV, Hansen LM, Salama NR, Boonjakuakul JK, Syvanen M (2004) Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc Natl Acad Sci USA 101: 2106–2111PubMedCrossRefGoogle Scholar
  39. 39.
    Ehrt S, Voskuil M, Schnappinger D, Schoolnik G (2002) In: SHE Kaufmann, D Kabelitz (eds): Immunology of Infection. Academic Press, Amsterdam, The Netherlands. pp 169–180CrossRefGoogle Scholar
  40. 40.
    Mangan JA, Monahan IM, Butcher P (2002) In: B Wren, N Dorerll (eds): Functional microbial genomics. Academic Press, Amsterdam, The Netherlands. pp 137–151CrossRefGoogle Scholar
  41. 41.
    Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A (2002) Host-induced epidemic spread of the cholera bacterium. Nature 417: 642–645PubMedCrossRefGoogle Scholar
  42. 42.
    Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM (1988) Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168: 1487–1492PubMedCrossRefGoogle Scholar
  43. 43.
    Taylor RK, Miller VL, Furlong DB, Mekalanos JJ (1987) Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84: 2833–2837PubMedCrossRefGoogle Scholar
  44. 44.
    Thelin KH, Taylor RK (1996) Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains. Infect Immun 64: 2853–2856PubMedGoogle Scholar
  45. 45.
    Carroll PA, Tashima KT, Rogers MB, DiRita VJ, Calderwood SB (1997) Phase variation in tcpH modulates expression of the ToxR regulon in Vibrio cholerae. Mol Microbiol 25: 1099–1111PubMedCrossRefGoogle Scholar
  46. 46.
    DiRita VJ, Parsot C, Jander G, Mekalanos JJ (1991) Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci USA 88: 5403–5407PubMedCrossRefGoogle Scholar
  47. 47.
    Hase CC, Mekalanos JJ (1998) TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 95: 730–734PubMedCrossRefGoogle Scholar
  48. 48.
    Miller VL, Mekalanos JJ (1984) Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proc Natl Acad Sci USA 81: 3471–3475PubMedCrossRefGoogle Scholar
  49. 49.
    Bina J, Zhu J, Dziejman M, Faruque S, Calderwood S, Mekalanos J (2003) ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc Natl Acad Sci USA 100: 2801–2806PubMedCrossRefGoogle Scholar
  50. 50.
    Xu Q, Dziejman M, Mekalanos JJ (2003) Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci USA 100: 1286–1291PubMedCrossRefGoogle Scholar
  51. 51.
    Larocque RC, Harris JB, Dziejman M, Li X, Khan AI, Faruque AS, Faruque SM, Nair GB, Ryan ET, Qadri F et al (2005) Transcriptional profiling of Vibrio cholerae recovered directly from patient specimens during early and late stages of human infection. Infect Immun 73: 4488–4493PubMedCrossRefGoogle Scholar
  52. 52.
    Talaat AM, Lyons R, Howard ST, Johnston SA (2004) The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci USA 101: 4602–4607PubMedCrossRefGoogle Scholar
  53. 53.
    Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C et al (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J Exp Med 198: 693–704PubMedCrossRefGoogle Scholar
  54. 54.
    Rodriguez GM, Smith I (2003) Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol Microbiol 47: 1485–1494PubMedCrossRefGoogle Scholar
  55. 55.
    Boon C, Dick T (2002) Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol 184: 6760–6767PubMedCrossRefGoogle Scholar
  56. 56.
    Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198: 705–713PubMedCrossRefGoogle Scholar
  57. 57.
    Dasgupta N, Kapur V, Singh KK, Das TK, Sachdeva S, Jyothisri K, Tyagi JS (2000) Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis. Tuber Lung Dis 80: 141–159PubMedCrossRefGoogle Scholar
  58. 58.
    Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK (2001) Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci USA 98: 7534–7539PubMedCrossRefGoogle Scholar
  59. 59.
    Shi L, Jung YJ, Tyagi S, Gennaro ML, North RJ (2003) Expression of Th1-mediated immunity inmouse lungs induces a Mycobacterium tuberculosis transcription pattern characteristic of nonreplicating persistence. Proc Natl Acad Sci USA 100: 241–246PubMedCrossRefGoogle Scholar
  60. 60.
    Timm J, Post FA, Bekker LG, Walther GB, Wainwright HC, Manganelli R, Chan WT, Tsenova L, Gold B, Smith I et al (2003) Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci USA 100: 14321–14326PubMedCrossRefGoogle Scholar
  61. 61.
    Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE 3rd (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279: 40174–40184PubMedCrossRefGoogle Scholar
  62. 62.
    Ohno H, Zhu G, Mohan VP, Chu D, Kohno S, Jacobs WR Jr, Chan J (2003) The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis. Cell Microbiol 5: 637–648PubMedCrossRefGoogle Scholar
  63. 63.
    Kendall SL, Movahedzadeh F, Rison SC, Wernisch L, Parish T, Duncan K, Betts JC, Stoker NG (2004) The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis (Edinb) 84: 247–255CrossRefGoogle Scholar
  64. 64.
    Lucchini S, Liu H, Jin Q, Hinton JC, Yu J (2005) Transcriptional adaptation of Shigella flexneri during infection of macrophages and epithelial cells: insights into the strategies of a cytosolic bacterial pathogen. Infect Immun 73: 88–102PubMedCrossRefGoogle Scholar
  65. 65.
    Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47: 103–118PubMedCrossRefGoogle Scholar
  66. 66.
    Voyich JM, Braughton KR, Sturdevant DE, Whitney AR, Said-Salim B, Porcella SF, Long RD, Dorward DW, Gardner DJ, Kreiswirth BN et al (2005) Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J Immunol 175: 3907–3919PubMedGoogle Scholar
  67. 67.
    Voyich JM, Braughton KR, Sturdevant DE, Vuong C, Kobayashi SD, Porcella SF, Otto M, Musser JM, DeLeo FR (2004) Engagement of the pathogen survival response used by group A Streptococcus to avert destruction by innate host defense. J Immunol 173: 1194–1201PubMedGoogle Scholar
  68. 68.
    Voyich JM, Sturdevant DE, Braughton KR, Kobayashi SD, Lei B, Virtaneva K, Dorward DW, Musser JM, DeLeo FR (2003) Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 100: 1996–2001PubMedCrossRefGoogle Scholar
  69. 69.
    Virtaneva K, Porcella SF, Graham MR, Ireland RM, Johnson CA, Ricklefs SM, Babar I, Parkins LD, Romero RA, Corn GJ et al (2005) Longitudinal analysis of the group A Streptococcus transcriptome in experimental pharyngitis in cynomolgus macaques. Proc Natl Acad Sci USA 102: 9014–9019PubMedCrossRefGoogle Scholar
  70. 70.
    Dietrich G, Kurz S, Hubner C, Aepinus C, Theiss S, Guckenberger M, Panzner U, Weber J, Frosch M (2003) Transcriptome analysis of Neisseria meningitidis during infection. J Bacteriol 185: 155–164PubMedCrossRefGoogle Scholar
  71. 71.
    Frisk A, Schurr JR, Wang G, Bertucci DC, Marrero L, Hwang SH, Hassett DJ, Schurr MJ (2004) Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immun 72: 5433–5438PubMedCrossRefGoogle Scholar
  72. 72.
    Dahan S, Knutton S, Shaw RK, Crepin VF, Dougan G, Frankel G (2004) Transcriptome of enterohemorrhagic Escherichia coli O157 adhering to eukaryotic plasma membranes. Infect Immun 72: 5452–5459PubMedCrossRefGoogle Scholar
  73. 73.
    Snyder JA, Haugen BJ, Buckles EL, Lockatell CV, Johnson DE, Donnenberg MS, Welch RA, Mobley HL (2004) Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72: 6373–6381PubMedCrossRefGoogle Scholar
  74. 74.
    Staudinger BJ, Oberdoerster MA, Lewis PJ, Rosen H (2002) mRNA expression profiles for Escherichia coli ingested by normal and phagocyte oxidase-deficient human neutrophils. J Clin Invest 110: 1151–1163PubMedCrossRefGoogle Scholar
  75. 75.
    Knuth K, Niesalla H, Hueck CJ, Fuchs TM (2004) Large-scale identification of essential Salmonella genes by trapping lethal insertions. Mol Microbiol 51: 1729–1744PubMedCrossRefGoogle Scholar
  76. 76.
    Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100: 4678–4683PubMedCrossRefGoogle Scholar
  77. 77.
    Lamichhane G, Tyagi S, Bishai WR (2005) Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs. Infect Immun 73: 2533–2540PubMedCrossRefGoogle Scholar
  78. 78.
    Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, Broman KW, Bishai WR (2003) A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 100: 7213–7218PubMedCrossRefGoogle Scholar
  79. 79.
    Sassetti CM, Boyd DH, Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98: 12712–12717PubMedCrossRefGoogle Scholar
  80. 80.
    Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77–84PubMedCrossRefGoogle Scholar
  81. 81.
    Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100: 12989–12994PubMedCrossRefGoogle Scholar
  82. 82.
    Akerley BJ, Rubin EJ, Novick VL, Amaya K, Judson N, Mekalanos JJ (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci USA 99: 966–971PubMedCrossRefGoogle Scholar
  83. 83.
    Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS et al (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185: 5673–5684PubMedCrossRefGoogle Scholar
  84. 84.
    Hutchison CA, Peterson SN, Gill SR, Cline RT, White O, Fraser CM, Smith HO, Venter JC (1999) Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286: 2165–2169PubMedCrossRefGoogle Scholar
  85. 85.
    Salama NR, Shepherd B, Falkow S (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186: 7926–7935PubMedCrossRefGoogle Scholar
  86. 86.
    Winterberg KM, Luecke J, Bruegl AS, Reznikoff WS (2005) Phenotypic screening of Escherichia coli K-12 Tn5 insertion libraries, using whole-genome oligonucleotide microarrays. Appl Environ Microbiol 71: 451–459PubMedCrossRefGoogle Scholar
  87. 87.
    Autret N, Charbit A (2005) Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiol Rev 29: 703–717PubMedCrossRefGoogle Scholar
  88. 88.
    Mecsas J (2002) Use of signature-tagged mutagenesis in pathogenesis studies. Curr Opin Microbiol 5: 33–37PubMedCrossRefGoogle Scholar
  89. 89.
    Shea JE, Santangelo JD, Feldman RG (2000) Signature-tagged mutagenesis in the identification of virulence genes in pathogens. Curr Opin Microbiol 3: 451–458PubMedCrossRefGoogle Scholar
  90. 90.
    Darwin KH, Nathan CF (2005) Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis. Infect Immun 73: 4581–4587PubMedCrossRefGoogle Scholar
  91. 91.
    Rengarajan J, Bloom BR, Rubin EJ (2005) Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci USA 102: 8327–8332PubMedCrossRefGoogle Scholar
  92. 92.
    Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, Young RA, Lander ES, Hacohen N (2001) The plasticity of dendritic cell responses to pathogens and their components. Science 294: 870–875PubMedCrossRefGoogle Scholar
  93. 93.
    Jenner RG, Young RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3: 281–294PubMedCrossRefGoogle Scholar
  94. 94.
    Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, Young RA (2002) Human macrophage activation programs induced by bacterial pathogens. Proc Natl Acad Sci USA 99: 1503–1508PubMedCrossRefGoogle Scholar
  95. 95.
    Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6: 33–43PubMedCrossRefGoogle Scholar
  96. 96.
    Mukhopadhyay S, Herre J, Brown GD, Gordon S (2004) The potential for Toll-like receptors to collaborate with other innate immune receptors. Immunology 112: 521–530PubMedCrossRefGoogle Scholar
  97. 97.
    Sabroe I, Read RC, Whyte MK, Dockrell DH, Vogel SN, Dower SK (2003) Toll-like receptors in health and disease: complex questions remain. J Immunol 171: 1630–1635PubMedGoogle Scholar
  98. 98.
    Triantafilou M, Triantafilou K (2002) Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol 23: 301–304PubMedCrossRefGoogle Scholar
  99. 99.
    Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T (2003) Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171: 3154–3162PubMedGoogle Scholar
  100. 100.
    Underhill DM, Ozinsky A (2002) Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20: 825–852PubMedCrossRefGoogle Scholar
  101. 101.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4: 499–511PubMedCrossRefGoogle Scholar
  102. 102.
    Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17: 1–14PubMedCrossRefGoogle Scholar
  103. 103.
    Nau GJ, Schlesinger A, Richmond JF, Young RA (2003) Cumulative Toll-like receptor activation in human macrophages treated with whole bacteria. J Immunol 170: 5203–5209PubMedGoogle Scholar
  104. 104.
    Pai RK, Pennini ME, Tobian AA, Canaday DH, Boom WH, Harding CV (2004) Prolonged toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibits gamma interferon-induced regulation of selected genes in macrophages. Infect Immun 72: 6603–6614PubMedCrossRefGoogle Scholar
  105. 105.
    Schmitz F, Mages J, Heit A, Lang R, Wagner H (2004) Transcriptional activation induced in macrophages by Toll-like receptor (TLR) ligands: from expression profiling to a model of TLR signaling. Eur J Immunol 34: 2863–2873PubMedCrossRefGoogle Scholar
  106. 106.
    Shi S, Blumenthal A, Hickey CM, Gandotra S, Levy D, Ehrt S (2005) Expression of many immunologically important genes in Mycobacterium tuberculosis-infected macrophages is independent of both TLR2 and TLR4 but dependent on IFN-alphabeta receptor and STAT1. J Immunol 175: 3318–3328PubMedGoogle Scholar
  107. 107.
    Shi S, Nathan C, Schnappinger D, Drenkow J, Fuortes M, Block E, Ding A, Gingeras TR, Schoolnik G, Akira S et al (2003) MyD88 primes macrophages for full-scale activation by interferon-gamma yet mediates few responses to Mycobacterium tuberculosis. J Exp Med 198: 987–997PubMedCrossRefGoogle Scholar
  108. 108.
    Schnare M, Rollinghoff M, Qureshi S (2005) Toll-like receptors: Sentinels of host defence against bacterial infection. Int Arch Allergy Immunol 139: 75–85PubMedCrossRefGoogle Scholar
  109. 109.
    Takeuchi O, Hoshino K, Akira S (2000) Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcusaureus infection. J Immunol 165: 5392–5396PubMedGoogle Scholar
  110. 110.
    Mancuso G, Midiri A, Beninati C, Biondo C, Galbo R, Akira S, Henneke P, Golenbock D, Teti G (2004) Dual role of TLR2 and myeloid differentiation factor 88 in a mouse model of invasive group B streptococcal disease. J Immunol 172: 6324–6349PubMedGoogle Scholar
  111. 111.
    Drennan MB, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J, Fremond C, Wagner H, Kirschning C, Ryffel B (2004) Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 164: 49–57PubMedGoogle Scholar
  112. 112.
    Reiling N, Holscher C, Fehrenbach A, Kroger S, Kirschning CJ, Goyert S, Ehlers S (2002) Cutting edge: Toll-like receptor (TLR)2-and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 169: 3480–3484PubMedGoogle Scholar
  113. 113.
    Boldrick JC, Alizadeh AA, Diehn M, Dudoit S, Liu CL, Belcher CE, Botstein D, Staudt LM, Brown PO, Relman DA (2002) Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc Natl Acad Sci USA 99: 972–977PubMedCrossRefGoogle Scholar
  114. 114.
    Chaussabel D, Semnani RT, McDowell MA, Sacks D, Sher A, Nutman TB (2003) Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102: 672–681PubMedCrossRefGoogle Scholar
  115. 115.
    Detweiler CS, Cunanan DB, Falkow S (2001) Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death. Proc Natl Acad Sci USA 98: 5850–5855PubMedCrossRefGoogle Scholar
  116. 116.
    Monack DM, Hersh D, Ghori N, Bouley D, Zychlinsky A, Falkow S (2000) Salmonella exploits caspase-1 to colonize Peyer’s patches in a murine typhoid model. J Exp Med 192: 249–258PubMedCrossRefGoogle Scholar
  117. 117.
    Sauvonnet N, Pradet-Balade B, Garcia-Sanz JA, Cornelis GR (2002) Regulation of mRNA expression in macrophages after Yersinia enterocolitica infection. Role of different Yop effectors. J Biol Chem 277: 25133–25142PubMedCrossRefGoogle Scholar
  118. 118.
    Ehrt S, Schnappinger D, Bekiranov S, Drenkow J, Shi S, Gingeras TR, Gaasterland T, Schoolnik G, Nathan C (2001) Reprogramming of the macrophage transcriptome in response to interferon-gamma and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase. J Exp Med 194: 1123–1140PubMedCrossRefGoogle Scholar
  119. 119.
    Cooper AM, Magram J, Ferrante J, Orme IM (1997) Interleukin 12(IL-12) is crucial to the development of protective immunity in mice intravenously infected with Mycobacterium tuberculosis. J Exp Med 186: 39–45PubMedCrossRefGoogle Scholar
  120. 120.
    Flynn JL, Goldstein MM, Triebold KJ, Sypek J, Wolf S, Bloom BR (1995) IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. J Immunol 155: 2515–2524PubMedGoogle Scholar
  121. 121.
    Altare F, Durandy A, Lammas D, Emile JF, Lamhamedi S, Le Deist F, Drysdale P, Jouanguy E, Doffinger R, Bernaudin F et al (1998) Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280: 1432–1435PubMedCrossRefGoogle Scholar
  122. 122.
    Altare F, Lammas D, Revy P, Jouanguy E, Doffinger R, Lamhamedi S, Drysdale P, Scheel-Toellner D, Girdlestone J, Darbyshire P et al (1998) Inherited interleukin 12 deficiency in a child with bacille Calmette-Guerin and Salmonella enteritidis disseminated infection. J Clin Invest 102:2035–2040PubMedCrossRefGoogle Scholar
  123. 123.
    de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, van Breda Vriesman PJ, Kabel PJ, Draaisma JM, van Dissel JT, Kroon FP et al (1998) Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280: 1435–1438PubMedCrossRefGoogle Scholar
  124. 124.
    Lord PG (2004) Progress in applying genomics in drug development. Toxicol Lett 149: 371–375PubMedCrossRefGoogle Scholar
  125. 125.
    Nathan C (2004) Antibiotics at the crossroads. Nature 431: 899–902PubMedCrossRefGoogle Scholar
  126. 126.
    Orihuela CJ, Radin JN, Sublett JE, Gao G, Kaushal D, Tuomanen EI (2004) Microarray analysis of pneumococcal gene expression during invasive disease. Infect Immun 72: 5582–5596PubMedCrossRefGoogle Scholar
  127. 127.
    Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD et al (2000) Functional discovery via a compendium of expression profiles. Cell 102: 109–126PubMedCrossRefGoogle Scholar
  128. 128.
    Seo D, Ginsburg GS (2005) Genomic medicine: bringing biomarkers to clinical medicine. Curr Opin Chem Biol 9: 381–386PubMedCrossRefGoogle Scholar
  129. 129.
    Waters MD, Fostel JM (2004) Toxicogenomics and systems toxicology: aims and prospects. Nat Rev Genet 5: 936–948PubMedCrossRefGoogle Scholar
  130. 130.
    Hoffman ES, Smith RE, Renaud RC Jr (2005) From the analyst’s couch: TLR-targeted therapeutics. Nat Rev Drug Discov 4: 879–880PubMedCrossRefGoogle Scholar
  131. 131.
    Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3: 196–200PubMedCrossRefGoogle Scholar
  132. 132.
    Skinner RB Jr (2003) Imiquimod. Dermatol Clin 21: 291–300PubMedCrossRefGoogle Scholar
  133. 133.
    Suzuki N, Suzuki S, Duncan GS, Millar DG, Wada T, Mirtsos C, Takada H, Wakeham A, Itie A, Li S et al (2002) Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416: 750–756PubMedCrossRefGoogle Scholar
  134. 134.
    Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, Kano S, Honda K, Ohba Y, Mak TW et al (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434: 243–249PubMedCrossRefGoogle Scholar
  135. 135.
    Lawton JA, Ghosh P (2003) Novel therapeutic strategies based on toll-like receptor signaling. Curr Opin Chem Biol 7: 446–451PubMedCrossRefGoogle Scholar
  136. 136.
    Zuany-Amorim C, Hastewell J, Walker C (2002) Toll-like receptors as potential therapeutic targets for multiple diseases. Nat Rev Drug Discov 1: 797–807PubMedCrossRefGoogle Scholar
  137. 137.
    Austen M, Dohrmann C (2005) Phenotype-first screening for the identification of novel drug targets. Drug Discov Today 10: 275–282PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Dirk Schnappinger
    • 1
  1. 1.Department of Microbiology and ImmunologyWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations