Biological robustness in complex host-pathogen systems

  • Hiroaki Kitano
Part of the Progress in Drug Research book series (PDR, volume 64)


Infectious diseases are still the number one killer of human beings. Even in developed countries, infectious diseases continue to be a major health threat. This article explores a conceptual framework for understanding infectious diseases in the context of the complex dynamics between microbe and host, and explores theoretical strategies for anti-infectives. The central pillar of this conceptual framework is that biological robustness is a fundamental property of systems that is closely interlinked with the evolution of symbiotic host-pathogen systems. There are specific architectural features of such robust yet evolvable systems and interpretable trade-offs between robustness, fragility, resource demands, and performance. This concept applies equally to both microbes and host. Pathogens have evolved to exploit the host using various strategies as well as effective escape mechanisms. Modular pathogenicity islands (PAI) derived from horizontal gene transfer, highly variable surface molecules, and a range of other countermeasures enhance the robustness of a pathogen against attacks from the host immune system. The host has likewise evolved complex defensive mechanisms to protect itself against pathogenic threats, but the host immune system includes several trade-offs that can be exploited by pathogens and induces undesirable inflammatory reactions. Due to the complexity of the dynamics emerging from the interactions of multiple microbes and a host, effective counter-measures require an in-depth understanding of system dynamics as well as detailed molecular mechanisms of the processes that are involved.


Host Immune System Bacterial Chemotaxis Variant Surface Glycoprotein Frontal Attack Pathogenic Threat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kitano H (2004) Biological robustness. Nat Rev Genet 5(11): 826–837PubMedCrossRefGoogle Scholar
  2. 2.
    Stelling J, Sauer U, Szallasi Z, Doyle FJ 3rd, Doyle J (2004) Robustness of cellular functions. Cell 118(6): 675–685PubMedCrossRefGoogle Scholar
  3. 3.
    Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397(6715): 168–171PubMedCrossRefGoogle Scholar
  4. 4.
    Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387(6636): 913–917PubMedCrossRefGoogle Scholar
  5. 5.
    Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97(9): 4649–4653PubMedCrossRefGoogle Scholar
  6. 6.
    von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406(6792): 188–192CrossRefGoogle Scholar
  7. 7.
    Ingolia NT (2004) Topology and robustness in the Drosophila segment polarity network. PLoS Biol 2(6): E123PubMedCrossRefGoogle Scholar
  8. 8.
    Little JW, Shepley DP, Wert DW (1999) Robustness of a gene regulatory circuit. Embo J 18(15): 4299–4307PubMedCrossRefGoogle Scholar
  9. 9.
    Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96(4): 1463–1468PubMedCrossRefGoogle Scholar
  10. 10.
    Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50(3): 967–976CrossRefGoogle Scholar
  11. 11.
    Rutherford SL (2003) Between genotype and phenotype: protein chaperones and evolvability. Nat Rev Genet 4(4): 263–274PubMedCrossRefGoogle Scholar
  12. 12.
    de Visser J, Hermission J, Wagner GP, Meyers L, Bagheri-Chaichian H, Blanchard J, Chao L, Cheverud J, Elena S, Fontana W et al (2003) Evolution and detection of genetics robustness. Evolution 57(9): 1959–1972PubMedCrossRefGoogle Scholar
  13. 13.
    Gerhart J, Kirschner M (1997) Cells, embryos, and evolution: toward a cellular and developmental understanding of phenotypic variation and evolutionary adaptability. Blackwell Science, Malden, Massachusetts, USAGoogle Scholar
  14. 14.
    Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95(15): 8420–8427PubMedCrossRefGoogle Scholar
  15. 15.
    Kitano H (2004) Cancer as a robust system: implications for anticancer therapy. Nat Rev Cancer 4(3): 227–235PubMedCrossRefGoogle Scholar
  16. 16.
    Kitano H (2003) Cancer robustness: tumour tactics. Nature 426(6963): 125PubMedCrossRefGoogle Scholar
  17. 17.
    Kitano H, Oda K, Kimura T, Matsuoka Y, Csete M, Doyle J, Muramatsu M (2004) Metabolic syndrome and robustness tradeoffs. Diabetes 53Suppl 3: S6–S15PubMedGoogle Scholar
  18. 18.
    Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2(12): 908–916PubMedCrossRefGoogle Scholar
  19. 19.
    Ferrell JE Jr (2002) Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14(2): 140–148PubMedCrossRefGoogle Scholar
  20. 20.
    Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15(8): 3841–3862PubMedCrossRefGoogle Scholar
  21. 21.
    Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294(5541): 321–326PubMedCrossRefGoogle Scholar
  22. 22.
    Schlichting C, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Inc., Sunderland, MA, USAGoogle Scholar
  23. 23.
    Eldar A, Dorfman R, Weiss D, Ashe H, Shilo BZ, Barkai N (2002) Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419(6904): 304–308PubMedCrossRefGoogle Scholar
  24. 24.
    Meir E, von Dassow G, Munro E, Odell GM (2002) Robustness, flexibility, and the role of lateral inhibition in the neurogenic network. Curr Biol 12(10): 778–786PubMedCrossRefGoogle Scholar
  25. 25.
    Schlosser G, Wagner G (eds) (2004) Modularity in development and evolution. The University of Chicago Press, Chicago, USAGoogle Scholar
  26. 26.
    Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396(6709): 336–342PubMedCrossRefGoogle Scholar
  27. 27.
    Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417(6889): 618–624PubMedCrossRefGoogle Scholar
  28. 28.
    Siegal ML, Bergman A (2002) Waddington’s canalization revisited: developmental stability and evolution. Proc Natl Acad Sci USA 99(16): 10528–10532PubMedCrossRefGoogle Scholar
  29. 29.
    Waddington CH (1957) The strategy of the genes: a discussion of some aspects of theoretical biology. Macmillan, New York, USAGoogle Scholar
  30. 30.
    Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ, Elowitz MB, Alon U (2004) Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat Genet 36(2): 147–150PubMedCrossRefGoogle Scholar
  31. 31.
    Csete ME, Doyle J (2004) Bow ties, metabolism and disease. Trends Biotechnol 22(9): 446–450PubMedCrossRefGoogle Scholar
  32. 32.
    Carlson JM, Doyle J (1999) Highly optimized tolerance: a mechanism for power laws in designed systems. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60(2 Pt A): 1412–1427PubMedGoogle Scholar
  33. 33.
    Carlson JM, Doyle J (2002) Complexity and robustness. Proc Natl Acad Sci USA 99Suppl 1: 2538–2545PubMedCrossRefGoogle Scholar
  34. 34.
    Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295(5560): 1664–1669PubMedCrossRefGoogle Scholar
  35. 35.
    Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Physical Review A 38(1): 364–374PubMedCrossRefGoogle Scholar
  36. 36.
    Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2): 101–113PubMedCrossRefGoogle Scholar
  37. 37.
    Lamport L, Shostak R, Pease M (1982) The Byzantine generals problem. ACM Transactions on Programming Language and Systems 4(3): 382–401CrossRefGoogle Scholar
  38. 38.
    Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2005) Escape of intracellular Shigella from autophagy. Science 307(5710): 727–731PubMedCrossRefGoogle Scholar
  39. 39.
    Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A (1999) The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 96(5): 2396–2401PubMedCrossRefGoogle Scholar
  40. 40.
    Waterman SR, Holden DW (2003) Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5(8): 501–511PubMedCrossRefGoogle Scholar
  41. 41.
    Cossart P, Pizarro-Cerda J, Lecuit M (2003) Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol 13(1): 23–31PubMedCrossRefGoogle Scholar
  42. 42.
    Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54: 641–679PubMedCrossRefGoogle Scholar
  43. 43.
    Groisman EA, Ochman H (1996) Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87(5): 791–794PubMedCrossRefGoogle Scholar
  44. 44.
    Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272(5270): 1910–1914PubMedCrossRefGoogle Scholar
  45. 45.
    Merrell DS, Falkow S (2004) Frontal and stealth attack strategies in microbial pathogenesis. Nature 430(6996): 250–256PubMedCrossRefGoogle Scholar
  46. 46.
    Dubois ME, Demick KP, Mansfield JM (2005) Trypanosomes expressing a mosaic variant surface glycoprotein coat escape early detection by the immune system. Infect Immun 73(5): 2690–2697PubMedCrossRefGoogle Scholar
  47. 47.
    Blaser MJ (2005) An endangered species in the stomach. Sci Am 292(2): 38–45PubMedCrossRefGoogle Scholar
  48. 48.
    Umehara S, Higashi H, Ohnishi N, Asaka M, Hatakeyama M (2003) Effects of Helicobacter pylori CagA protein on the growth and survival of B lymphocytes, the origin of MALT lymphoma. Oncogene 22(51): 8337–8342PubMedCrossRefGoogle Scholar
  49. 49.
    McCune JM (2001) The dynamics of CD4+ T-cell depletion in HIV disease. Nature 410(6831): 974–979PubMedCrossRefGoogle Scholar
  50. 50.
    McMichael AJ, Rowland-Jones SL (2001) Cellular immune responses to HIV. Nature 410(6831): 980–987PubMedCrossRefGoogle Scholar
  51. 51.
    Larder BA, Kemp SD (1989) Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246(4934): 1155–1158PubMedCrossRefGoogle Scholar
  52. 52.
    Tisdale M, Kemp SD, Parry NR, Larder BA (1993) Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3′-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc Natl Acad Sci USA 90(12): 5653–5656PubMedCrossRefGoogle Scholar
  53. 53.
    Larder BA, Kemp SD, Harrigan PR (1995) Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. Science 269(5224): 696–699PubMedCrossRefGoogle Scholar
  54. 54.
    Dropulic B, Hermankova M, Pitha PM (1996) A conditionally replicating HIV-1 vector interferes with wild-type HIV-1 replication and spread. Proc Natl Acad Sci USA 93(20): 11103–11108PubMedCrossRefGoogle Scholar
  55. 55.
    Weinberger LS, Schaffer DV, Arkin AP (2003) Theoretical design of a gene therapy to prevent AIDS but not human immunodeficiency virus type 1 infection. J Virol 77(18): 10028–10036PubMedCrossRefGoogle Scholar
  56. 56.
    Mautino MR, Morgan RA (2002) Gene therapy of HIV-1 infection using lentiviral vectors expressing anti-HIV-1 genes. AIDS Patient Care STDS 16(1): 11–26PubMedCrossRefGoogle Scholar
  57. 57.
    Kitano H, Oda K (2006) Robustness trade-offs and host-microbial symbiosis in the immune system. Mol Sys Biol msb4100039-E1Google Scholar
  58. 58.
    Oda K, Kitano H (2006) A comprehensive molecular interaction map of Toll-like receptor signaling network. Mol Sys Biol msb4100057Google Scholar
  59. 59.
    Gilroy DW, Lawrence T, Perretti M, Rossi AG (2004) Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3(5): 401–416PubMedCrossRefGoogle Scholar
  60. 60.
    Nathan C (2002) Points of control in inflammation. Nature 420(6917): 846–852PubMedCrossRefGoogle Scholar
  61. 61.
    O’Shea JJ, Ma A, Lipsky P (2002) Cytokines and autoimmunity. Nat Rev Immunol 2(1): 37–45PubMedCrossRefGoogle Scholar
  62. 62.
    Conn CA, McClellan JL, Maassab HF, Smitka CW, Majde JA, Kluger MJ (1995) Cytokines and the acute phase response to influenza virus in mice. Am J Physiol 268(1 Pt 2): R78–84PubMedGoogle Scholar
  63. 63.
    Hennet T, Ziltener HJ, Frei K, Peterhans E (1992) A kinetic study of immune mediators in the lungs of mice infected with influenza A virus. J Immunol 149(3): 932–939PubMedGoogle Scholar
  64. 64.
    Wyde PR, Wilson MR, Cate TR (1982) Interferon production by leukocytes infiltrating the lungs of mice during primary influenza virus infection. Infect Immun 38(3): 1249–1255PubMedGoogle Scholar
  65. 65.
    Oda T, Akaike T, Hamamoto T, Suzuki F, Hirano T, Maeda H (1989) Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 244(4907): 974–976PubMedCrossRefGoogle Scholar
  66. 66.
    Ikemoto K, Pollard RB, Fukumoto T, Morimatsu M, Suzuki F (1995) Small amounts of exogenous IL-4 increase the severity of encephalitis induced in mice by the intranasal infection of herpes simplex virus type 1. J Immunol 155(3): 1326–1333PubMedGoogle Scholar
  67. 67.
    Matsumori A, Shioi T, Yamada T, Matsui S, Sasayama S (1994) Vesnarinone, a new inotropic agent, inhibits cytokine production by stimulated human blood from patients with heart failure. Circulation 89(3): 955–958PubMedGoogle Scholar
  68. 68.
    Matsui S, Matsumori A, Matoba Y, Uchida A, Sasayama S (1994) Treatment of virus-induced myocardial injury with a novel immunomodulating agent, vesnarinone. Suppression of natural killer cell activity and tumor necrosis factoralpha production. J Clin Invest 94(3): 1212–1217PubMedCrossRefGoogle Scholar
  69. 69.
    Muto Y, Nouri-Aria KT, Meager A, Alexander GJ, Eddleston AL, Williams R (1988) Enhanced tumour necrosis factor and interleukin-1 in fulminant hepatic failure. Lancet 2(8602): 72–74PubMedCrossRefGoogle Scholar
  70. 70.
    Wakabayashi G, Gelfand JA, Burke JF, Thompson RC, Dinarello CA (1991) A specific receptor antagonist for interleukin 1 prevents Escherichia coli-induced shock in rabbits. Faseb J 5(3): 338–343PubMedGoogle Scholar
  71. 71.
    Csete M, Doyle J (2004) Bow ties, metabolism and disease. Trends Biotechnol 22(9): 446–450PubMedCrossRefGoogle Scholar
  72. 72.
    Rudensky A, Preston-Hurlburt P, Hong SC, Barlow A, Janeway CA Jr (1991) Sequence analysis of peptides bound to MHC class II molecules. Nature 353(6345): 622–627PubMedCrossRefGoogle Scholar
  73. 73.
    Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364(6432): 33–39PubMedCrossRefGoogle Scholar
  74. 74.
    Yewdell JW, Bennink JR (2001) Cut and trim: generating MHC class I peptide ligands. Curr Opin Immunol 13(1): 13–18PubMedCrossRefGoogle Scholar
  75. 75.
    Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, Eckmann L, Karin M (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307(5710): 734–738PubMedCrossRefGoogle Scholar
  76. 76.
    Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, Flavell RA (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307(5710): 731–734PubMedCrossRefGoogle Scholar
  77. 77.
    Tiveljung A, Soderholm JD, Olaison G, Jonasson J, Monstein HJ (1999) Presence of eubacteria in biopsies from Crohn’s disease inflammatory lesions as determined by 16S rRNA gene-based PCR. J Med Microbiol 48(3): 263–268PubMedGoogle Scholar
  78. 78.
    Baum H, Davies H, Peakman M (1996) Molecular mimicry in the MHC: hidden clues to autoimmunity? Immunol Today 17(2): 64–70PubMedCrossRefGoogle Scholar
  79. 79.
    Eriksson U, Ricci R, Hunziker L, Kurrer MO, Oudit GY, Watts TH, Sonderegger I, Bachmaier K, Kopf M, Penninger JM (2003) Dendritic cell-induced autoimmune heart failure requires cooperation between adaptive and innate immunity. Nat Med 9(12): 1484–1490PubMedCrossRefGoogle Scholar
  80. 80.
    von Herrath MG, Fujinami RS, Whitton JL (2003) Microorganisms and autoimmunity: making the barren field fertile? Nat Rev Microbiol 1(2): 151–157CrossRefGoogle Scholar
  81. 81.
    Saikku P, Leinonen M, Mattila K, Ekman MR, Nieminen MS, Makela PH, Huttunen JK, Valtonen V (1988) Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2(8618): 983–986PubMedCrossRefGoogle Scholar
  82. 82.
    Campbell LA, Kuo CC (2004) Chlamydia pneumoniae — an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2(1): 23–32PubMedCrossRefGoogle Scholar
  83. 83.
    Haranaga S, Yamaguchi H, Friedman H, Izumi S, Yamamoto Y (2001) Chlamydia pneumoniae infects and multiplies in lymphocytes in vitro. Infect Immun 69(12): 7753–7759PubMedCrossRefGoogle Scholar
  84. 84.
    Wick G, Perschinka H, Xu Q (1999) Autoimmunity and atherosclerosis. Am Heart J 138(5 Pt 2): S444–449PubMedCrossRefGoogle Scholar
  85. 85.
    Bachmaier K, Neu N, de la Maza LM, Pal S, Hessel A, Penninger JM (1999) Chlamydia infections and heart disease linked through antigenic mimicry. Science 283(5406): 1335–1339PubMedCrossRefGoogle Scholar
  86. 86.
    Xu J, Gordon JI (2003) Inaugural article: Honor thy symbionts. Proc Natl Acad Sci USA 100(18): 10452–10459PubMedCrossRefGoogle Scholar
  87. 87.
    Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31: 107–133PubMedCrossRefGoogle Scholar
  88. 88.
    Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22: 283–307PubMedCrossRefGoogle Scholar
  89. 89.
    Macpherson AJ, Hunziker L, McCoy K, Lamarre A (2001) IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms. Microbes Infect 3(12): 1021–1035PubMedCrossRefGoogle Scholar
  90. 90.
    Macpherson AJ, Martinic MM, Harris N (2002) The functions of mucosal T cells in containing the indigenous commensal flora of the intestine. Cell Mol Life Sci 59(12): 2088–2096PubMedCrossRefGoogle Scholar
  91. 91.
    Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA 99(24): 15451–15455PubMedCrossRefGoogle Scholar
  92. 92.
    Kitano H, Oda K (2006) Self-extending symbiosis: a mechanism for increasing robustness through evolution. Biological Theory 1(1): 61–66CrossRefGoogle Scholar
  93. 93.
    Ushijima T, Ozaki Y (1988) Factors influencing potent antagonistic effects of Escherichia coli and Bacteroides ovatus on Staphylococcus aureus in anaerobic continuous flow cultures. Can J Microbiol 34(5): 645–650PubMedCrossRefGoogle Scholar
  94. 94.
    Ushijima T, Ozaki Y (1986) Potent antagonism of Escherichia coli, Bacteroides ovatus, Fusobacterium varium, and Enterococcus faecalis, alone or in combination, for enteropathogens in anaerobic continuous flow cultures. J Med Microbiol 22(2): 157–163PubMedCrossRefGoogle Scholar
  95. 95.
    Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, De Simone C (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121(3): 580–591PubMedCrossRefGoogle Scholar
  96. 96.
    Sartor RB (2005) Probiotic therapy of intestinal inflammation and infections. Curr Opin Gastroenterol 21(1): 44–50PubMedGoogle Scholar
  97. 97.
    Bergogne-Berezin E (2000) Treatment and prevention of antibiotic associated diarrhea. Int J Antimicrob Agents 16(4): 521–526PubMedCrossRefGoogle Scholar
  98. 98.
    Cardinale BJ, Palmer MA, Collins SL (2002) Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415(6870): 426–429PubMedCrossRefGoogle Scholar
  99. 99.
    Roberts MS, Garland JL, Mills AL (2004) Microbial astronauts: assembling microbial communities for advanced life support systems. Microb Ecol 47(2): 137–149PubMedCrossRefGoogle Scholar
  100. 100.
    Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Folsch UR, Timmis KN, Schreiber S (2004) Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53(5): 685–693PubMedCrossRefGoogle Scholar
  101. 101.
    Sartor RB (2003) Targeting enteric bacteria in treatment of inflammatory bowel diseases: why, how, and when. Curr Opin Gastroenterol 19(4): 358–365PubMedCrossRefGoogle Scholar
  102. 102.
    Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M et al (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122(1): 44–54PubMedCrossRefGoogle Scholar
  103. 103.
    Backhed F, Ley R, Sonnenburg J, Peterson D, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307: 1915–1920PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag 2007

Authors and Affiliations

  • Hiroaki Kitano
    • 1
    • 2
  1. 1.The Systems Biology InstituteShibuya, TokyoJapan
  2. 2.Sony Computer Science Laboratories, Inc.Shinagawa, TokyoJapan

Personalised recommendations