Pathogenesis of Chlamydophila pneumoniae infections — epidemiology, immunity, cell biology, virulence factors

  • Matthias Krüll
  • Norbert Suttorp
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Chlamydophila (Chlamydia) pneumoniae, a Gram-negative obligate intracellular bacterium, is a widespread respiratory pathogen causing sinusitis, pharyngitis, bronchitis and pneumonia. Repetitive or chronic persistent infections have been associated with an increased risk for asthma, chronic obstructive pulmonary disease (COPD) or vascular lesions. Although the genome of C. pneumoniae has been sequenced completely this information has not led yet to an understanding of the mechanisms of infection and target cell activation nor to the identification of potential chlamydial virulence factors. In this review we will give an overview on the pathogenesis of C. pneumoniae-induced acute and chronic infections.


Chronic Obstructive Pulmonary Disease Chlamydia Trachomatis Elementary Body Major Outer Membrane Protein Chlamydophila Pneumoniae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grayston JT, Kuo CC, Wang SP, Altman J (1986) A new Chlamydia psittaci strain, TWAR, isolated in acute respiratory tract infections. N Engl J Med 315:161–168PubMedGoogle Scholar
  2. 2.
    Kuo CC, Jackson LA, Campbell LA, Grayston JT (1995) Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 8: 451–461PubMedGoogle Scholar
  3. 3.
    Grayston JT, Aldous MB, Easton A, Wang SP, Kuo CC, Campbell LA, Altman J (1993) Evidence that Chlamydia pneumoniae causes pneumonia and bronchitis. J Infec Dis 168: 1231–1235Google Scholar
  4. 4.
    Dalhoff K, Maass M (1996) Chlamydia pneumoniae pneumonia in hospitalized patients. Clinical characteristics and diagnostic value of polymerase chain reaction detection in BAL. Chest 110: 351–356PubMedGoogle Scholar
  5. 5.
    Hahn DL (1999) Chlamydia pneumoniae, asthma, and COPD: what is the evidence? Ann Allergy Asthma Immunol 83: 271–288, 291PubMedGoogle Scholar
  6. 6.
    Sethi S, Murphy TF (2001) Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 14: 336–363PubMedGoogle Scholar
  7. 7.
    Fong IW, Chiu B, Viira E, Jang D, Mahony JB (1999) De novo induction of atherosclerosis by Chlamydia pneumoniae in a rabbit model. Infect Immunol 67: 6048–6055Google Scholar
  8. 8.
    Maass M, Bartels C, Engel PM, Mamat U, Sievers HH (1998) Endovascular presence of viable Chlamydia pneumoniae is a common phenomenon in coronary artery disease. J Am Coll Cardiol 31: 827–832PubMedGoogle Scholar
  9. 9.
    Saikku P, Leinonen M, Tenkanen L, Linnanmaki E, Ekman MR, Manninen V, Manttari M, Frick MH, Huttunen JK (1992) Chronic Chlamydia pneumoniae infection as a risk factor for coronary heart disease in the Helsinki Heart Study. Ann Int Med 116: 273–278PubMedGoogle Scholar
  10. 10.
    Shor A, Kuo CC, Patton DL (1992) Detection of Chlamydia pneumoniae in coronary arterial fatty streaks and atheromatous plaques. S Afr Med J 82:158–161PubMedGoogle Scholar
  11. 11.
    Kuo CC, Chen HH, Wang SP, Grayston JT (1986) Identification of a new group of Chlamydia psittaci strains called TWAR. J Clin Microbiol 24: 1034–1037PubMedGoogle Scholar
  12. 12.
    Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276: 734–740PubMedGoogle Scholar
  13. 13.
    Weisburg WG, Hatch TP, Woese CR (1986) Eubacterial origin of chlamydiae. J Bacteriol 167: 570–574PubMedGoogle Scholar
  14. 14.
    Everett KD, Bush RM, Andersen AA (1999) Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49 Pt 2: 415–440PubMedGoogle Scholar
  15. 15.
    Kalman S, Mitchell W, Marathe R, Lammel C, Fan J, Hyman RW, Olinger L, Grimwood J, Davis RW, Stephens RS (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Gen 21: 385–389Google Scholar
  16. 16.
    Hatch TP (1999) Development Biology. In: RS Stephens (ed): Chlamydia: Intracellular biology, pathogenesis, and immunity. ASM Press, Washington, DC, 29–67Google Scholar
  17. 17.
    Schachter J, Stephens RS, Timms P, Kuo C, Bavoil PM, Birkelund S, Boman J, Caldwell H, Campbell LA, Chernesky M et al (2001) Radical changes to chlamydial taxonomy are not necessary just yet. Int J Syst Evol Microbiol 51: 249–253PubMedGoogle Scholar
  18. 18.
    Schachter J (1999) Infection and disease epidemiology. In: RS Stephens (ed): Chlamydia: Intracellular biology, pathogenesis, and immunity. ASM Press, Washington, DC, 139–170Google Scholar
  19. 19.
    Blasi F, Tarsia P, Arosio C, Fagetti L, Allegra L (1998) Epidemiology of Chlamydia pneumoniae. Clin Microbiol Infect 4 (Suppl 4): S1–S6PubMedGoogle Scholar
  20. 20.
    Saikku P, Leinonen M, Mattila K, Ekman MR, Nieminen MS, Makela PH, Huttunen JK, Valtonen V (1988) Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2: 983–986PubMedGoogle Scholar
  21. 21.
    Dowell SF, Peeling RW, Boman J, Carlone GM, Fields BS, Guarner J, Hammerschlag MR, Jackson LA, Kuo CC, Maass M et al (2001) Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin Infect Dis 33: 492–503PubMedGoogle Scholar
  22. 22.
    Wang SP, Grayston JT (1970) Immunologic relationship between genital TRIC, lymphogranuloma venereum, and related organisms in a new microtiter indirect immunofluorescence test. Am J Ophthalmol 70: 367–374PubMedGoogle Scholar
  23. 23.
    Peeling RW, Wang SP, Grayston JT, Blasi F, Boman J, Clad A, Freidank H, Gaydos CA, Gnarpe J, Hagiwara T et al (2000) Chlamydia pneumoniae serology: interlaboratory variation in microimmunofluorescence assay results. J Infect Dis 181 (Suppl 3): S426–S429PubMedGoogle Scholar
  24. 24.
    Peeling RW (1999) Serology for Chlamydia pneumoniae (TWAR). In: L Allegra, F Blasi (eds): Chlamydia pneumoniae: the lung and the heart. Springer-Verlag Italia, Milano, 33–42Google Scholar
  25. 25.
    Kutlin A, Tsumura N, Emre U, Roblin PM, Hammerschlag MR (1997) Evaluation of Chlamydia immunoglobulin M (IgM), IgG, and IgA rELISAs Medac for diagnosis of Chlamydia pneumoniae infection. Clin Diagn Lab Immunol 4: 213–216PubMedGoogle Scholar
  26. 26.
    Maass M, Essig A, Marre R, Henkel W (1993) Growth in serum-free medium improves isolation of Chlamydia pneumoniae. J Clin Microbiol 31: 3050–3052PubMedGoogle Scholar
  27. 27.
    Tjhie JH, Roosendaal R, MacLaren DM, Vandenbroucke-Grauls CM (1997) Improvement of growth of Chlamydia pneumoniae on HEp-2 cells by pretreatment with polyethylene glycol in combination with additional centrifugation and extension of culture time. J Clin Microbiol 35: 1883–1884PubMedGoogle Scholar
  28. 28.
    Boman J, Allard A, Persson K, Lundborg M, Juto P, Wadell G 1997 Rapid diagnosis of respiratory Chlamydia pneumoniae infection by nested touchdown polymerase chain reaction compared with culture and antigen detection by EIA. J Infect Dis 175: 1523–1526PubMedGoogle Scholar
  29. 29.
    Campbell LA, O’Brien ER, Cappuccio AL, Kuo CC, Wang SP, Stewart D, Patton DL, Cummings PK, Grayston JT (1995) Detection of Chlamydia pneumoniae TWAR in human coronary atherectomy tissues. J Infect Dis 172: 585–588PubMedGoogle Scholar
  30. 30.
    Gaydos CA, Roblin PM, Hammerschlag MR, Hyman CL, Eiden JJ, Schachter J, Quinn TC (1994) Diagnostic utility of PCR-enzyme immunoassay, culture, and serology for detection of Chlamydia pneumoniae in symptomatic and asymptomatic patients. J Clin Microbiol 32: 903–905PubMedGoogle Scholar
  31. 31.
    Kuo CC, Shor A, Campbell LA, Fukushi H, Patton DL, Grayston JT (1993) Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis 167: 841–849PubMedGoogle Scholar
  32. 32.
    Wong YK, Gallagher PJ, Ward ME (1999) Chlamydia pneumoniae and atherosclerosis. Heart 81: 232–238PubMedGoogle Scholar
  33. 33.
    Kuo C, Campbell LA (2000) Detection of Chlamydia pneumoniae in arterial tissues. J Infect Dis 181 (Suppl 3): S432–S436PubMedGoogle Scholar
  34. 34.
    Lim WS, Macfarlane JT, Boswell TC, Harrison TG, Rose D, Leinonen M, Saikku P (2001) Study of community acquired pneumonia aetiology (SCAPA) in adults admitted to hospital: implications for management guidelines. Thorax 56: 296–301PubMedGoogle Scholar
  35. 35.
    Luna CM, Famiglietti A, Absi R, Videla AJ, Nogueira FJ, Fuenzalida AD, Gene RJ (2000) Community-acquired pneumonia: etiology, epidemiology, and outcome at a teaching hospital in Argentina. Chest 118: 1344–1354PubMedGoogle Scholar
  36. 36.
    Ruiz M, Ewig S, Marcos MA, Martinez JA, Arancibia F, Mensa J, Torres A (1999) Etiology of community-acquired pneumonia: impact of age, comorbidity, and severity. Am J Respir Crit Care Med 160: 397–405PubMedGoogle Scholar
  37. 37.
    Wattanathum A, Chaoprasong C, Nunthapisud P, Chantaratchada S, Limpairojn N, Jatakanon A, Chanthadisai N (2003) Community-acquired pneumonia in southeast Asia: the microbial differences between ambulatory and hospitalized patients. Chest 123: 1512–1519PubMedGoogle Scholar
  38. 38.
    Johnston SL, Martin RJ (2005) Chlamydophila pneumoniae and Mycoplasma pneumoniae: a role in asthma pathogenesis? Am J Respir Crit Care Med 172: 1078–1089PubMedGoogle Scholar
  39. 39.
    Webley WC, Salva PS, Andrzejewski C, Cirino F, West CA, Tilahun Y, Stuart ES (2005) The bronchial lavage of pediatric patients with asthma contains infectious Chlamydia. Am J Respir Crit Care Med 171: 1083–1088PubMedGoogle Scholar
  40. 40.
    Biscione GL, Corne J, Chauhan AJ, Johnston SL (2004) Increased frequency of detection of Chlamydophila pneumoniae in asthma. Eur Respir J 24: 745–749PubMedGoogle Scholar
  41. 41.
    Savykoski T, Harju T, Paldanius M, Kuitunen H, Bloigu A, Wahlstrom E, Rytila P, Kinnula V, Saikku P, Leinonen M (2004) Chlamydia pneumoniae infection and inflammation in adults with asthma. Respiration 71: 120–125PubMedGoogle Scholar
  42. 42.
    Branden E, Koyi H, Gnarpe J, Gnarpe H, Tornling G (2005) Chronic Chlamydia pneumoniae infection is a risk factor for the development of COPD. Respir Med 99: 20–26PubMedGoogle Scholar
  43. 43.
    Blasi F, Damato S, Cosentini R, Tarsia P, Raccanelli R, Centanni S, Allegra L (2002) Chlamydia pneumoniae and chronic bronchitis: association with severity and bacterial clearance following treatment. Thorax 57: 672–676PubMedGoogle Scholar
  44. 44.
    Wu L, Skinner SJ, Lambie N, Vuletic JC, Blasi F, Black PN (2000). Immunohist ochemical staining for Chlamydia pneumoniae is increased in lung tissue from subjects with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162: 1148–1151PubMedGoogle Scholar
  45. 45.
    Littman AJ, White E, Jackson LA, Thornquist MD, Gaydos CA, Goodman GE, Vaughan TL (2004) Chlamydia pneumoniae infection and risk of lung cancer. Cancer Epidemiol Biomarkers Prev 13: 1624–1630PubMedGoogle Scholar
  46. 46.
    Kocazeybek B (2003) Chronic Chlamydophila pneumoniae infection in lung cancer, a risk factor: a case-control study. J Med Microbiol 52: 721–726PubMedGoogle Scholar
  47. 47.
    Thom DH, Grayston JT, Siscovick DS, Wang SP, Weiss NS, Daling JR (1992) Association of prior infection with Chlamydia pneumoniae and angiographically demonstrated coronary artery disease. JAMA 268: 68–72PubMedGoogle Scholar
  48. 48.
    Ngeh J, Anand V, Gupta S (2002) Chlamydia pneumoniae and atherosclerosis-what we know and what we don’t. Clin Microbiol Infect 8: 2–13PubMedGoogle Scholar
  49. 49.
    Elkind MS, Lin IF, Grayston JT, Sacco RL (2000) Chlamydia pneumoniae and the risk of first ischemic stroke: The Northern Manhattan Stroke Study. Stroke 31: 1521–1525PubMedGoogle Scholar
  50. 50.
    Sander D, Winbeck K, Klingelhofer J, Etgen T, Conrad B (2001) Enhanced progression of early carotid atherosclerosis is related to Chlamydia pneumoniae (Taiwan acute respiratory) seropositivity. Circulation 103: 1390–1395PubMedGoogle Scholar
  51. 51.
    Ramirez JA (1996) Isolation of Chlamydia pneumoniae from the coronary artery of a patient with coronary atherosclerosis. The Chlamydia pneumoniae/ Atherosclerosis Study Group. Ann Intern Med 125: 979–982PubMedGoogle Scholar
  52. 52.
    Taylor-Robinson D, Thomas BJ (2000) Chlamydia pneumoniae in atherosclerotic tissue. J Infect Dis 181 (Suppl 3): S437–S440PubMedGoogle Scholar
  53. 53.
    Moazed TC, Kuo C, Grayston JT, Campbell LA (1997) Murine models of Chlamydia pneumoniae infection and atherosclerosis. J Infect Dis 175: 883–890PubMedGoogle Scholar
  54. 54.
    Blessing E, Campbell LA, Rosenfeld ME, Chough N, Kuo CC 2001 Chlamydia pneumoniae infection accelerates hyperlipidemia induced atherosclerotic lesion development in C57BL/6J mice. Atherosclerosis 158: 13–17PubMedGoogle Scholar
  55. 55.
    Muhlestein JB. 2003 Antibiotic treatment of atherosclerosis. Curr Opin Lipidol 14: 605–614PubMedGoogle Scholar
  56. 56.
    Gieffers J, van Zandbergen G, Rupp J, Sayk F, Kruger S, Ehlers S, Solbach W, Maass M (2004) Phagocytes transmit Chlamydia pneumoniae from the lungs to the vasculature. Eur Respir J 23: 506–510PubMedGoogle Scholar
  57. 57.
    Cercek B, Shah PK, Noc M, Zahger D, Zeymer U, Matetzky S, Maurer G, Mahrer P (2003) Effect of short-term treatment with azithromycin on recurrent ischaemic events in patients with acute coronary syndrome in the Azithromycin in Acute Coronary Syndrome (AZACS) trial: a randomised controlled trial. Lancet 361: 809–813PubMedGoogle Scholar
  58. 58.
    Gelfand EV, Cannon CP (2004) Antibiotics for secondary prevention of coronary artery disease: an ACES hypothesis but we need to PROVE IT. Am Heart J 147: 202–209PubMedGoogle Scholar
  59. 59.
    Grayston JT (2003) Antibiotic treatment of atherosclerotic cardiovascular disease. Circulation 107: 1228–1230PubMedGoogle Scholar
  60. 60.
    Gurfinkel E, Bozovich G, Daroca A, Beck E, Mautner B (1997) Randomised trial of roxithromycin in non-Q-wave coronary syndromes: ROXIS Pilot Study. ROXIS Study Group. Lancet 350: 404–407PubMedGoogle Scholar
  61. 61.
    Gurfinkel E (2000) Inflammation, infection, or both in atherosclerosis: the ROXIS trial in perspective. J Infect Dis 181 (Suppl 3): S566–S568PubMedGoogle Scholar
  62. 62.
    O’Connor CM, Dunne MW, Pfeffer MA, Muhlestein JB, Yao L, Gupta S, Benner RJ, Fisher MR, Cook TD (2003) Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA 290: 1459–1466PubMedGoogle Scholar
  63. 63.
    Beatty WL, Morrison RP, Byrne GI (1994) Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev 58: 686–699PubMedGoogle Scholar
  64. 64.
    Gieffers J, Fullgraf H, Jahn J, Klinger M, Dalhoff K, Katus HA, Solbach W, Maass M (2001) Chlamydia pneumoniae infection in circulating human monocytes is refractory to antibiotic treatment. Circulation 103: 351–356PubMedGoogle Scholar
  65. 65.
    Malinverni R, Kuo CC, Campbell LA, Lee A, Grayston JT (1995) Effects of two antibiotic regimens on course and persistence of experimental Chlamydia pneumoniae TWAR pneumonitis. Antimicrob Agents Chemother 39: 45–49PubMedGoogle Scholar
  66. 66.
    Stratton CW, Sriram S (2003) Association of Chlamydia pneumoniae with central nervous system disease. Microbes Infect 5: 1249–1253PubMedGoogle Scholar
  67. 67.
    Yucesan C, Sriram S (2001) Chlamydia pneumoniae infection of the central nervous system. Curr Opin Neurol 14: 355–359PubMedGoogle Scholar
  68. 68.
    Peterson EM, Cheng X, Qu Z, de la Maza LM (1996) Characterization of the murine antibody response to peptides representing the variable domains of the major outer membrane protein of Chlamydia pneumoniae. Infect Immun 64: 3354–3359PubMedGoogle Scholar
  69. 69.
    Gaydos CA, Summersgill JT, Sahney NN, Ramirez JA, Quinn TC (1996) Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infec Immu 64: 1614–1620Google Scholar
  70. 70.
    Roblin PM, Dumornay W, Hammerschlag MR (1992) Use of HEp-2 cells for improved isolation and passage of Chlamydia pneumoniae. J Clin Microbiol 30: 1968–1971PubMedGoogle Scholar
  71. 71.
    Wong KH, Skelton SK, Chan YK (1992) Efficient culture of Chlamydia pneumoniae with cell lines derived from the human respiratory tract. J Clin Microbiol 30: 1625–1630PubMedGoogle Scholar
  72. 72.
    Krull M, Maass M, Suttorp N, Rupp J (2005) Chlamydophila pneumoniae. Mechanisms of target cell infection and activation. Thromb Haemost 94: 319–326PubMedGoogle Scholar
  73. 73.
    Wuppermann FN, Hegemann JH, Jantos CA (2001) Heparan sulfate-like glycosaminoglycan is a cellular receptor for Chlamydia pneumoniae. J Infect Dis 184: 181–187PubMedGoogle Scholar
  74. 74.
    Davis CH, Raulston JE, Wyrick PB (2002) Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells. Infect Immun 70: 3413–3418PubMedGoogle Scholar
  75. 75.
    Puolakkainen M, Kuo CC, Campbell LA (2005) Chlamydia pneumoniae uses the mannose 6-phosphate/insulin-like growth factor 2 receptor for infection of endothelial cells. Infect Immun 73: 4620–4625PubMedGoogle Scholar
  76. 76.
    Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, Morrison SG, Morrison RP, Arditi M (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168: 1435–1440PubMedGoogle Scholar
  77. 77.
    Costa CP, Kirschning CJ, Busch D, Durr S, Jennen L, Heinzmann U, Prebeck S, Wagner H, Miethke T (2002) Role of chlamydial heat shock protein 60 in the stimulation of innate immune cells by Chlamydia pneumoniae. Eur J Immunol 32: 2460–2470PubMedGoogle Scholar
  78. 78.
    Da Costa CU, Wantia N, Kirschning CJ, Busch DH, Rodriguez N, Wagner H, Miethke T (2004) Heat shock protein 60 from Chlamydia pneumoniae elicits an unusual set of inflammatory responses via Toll-like receptor 2 and 4 in vivo. Eur J Immunol 34: 2874–2884PubMedGoogle Scholar
  79. 79.
    Netea MG, Kullberg BJ, Galama JM, Stalenhoef AF, Dinarello CA, Van der Meer JW (2002) Non-LPS components of Chlamydia pneumoniae stimulate cytokine production through Toll-like receptor 2-dependent pathways. Eur J Immunol 32: 1188–1195PubMedGoogle Scholar
  80. 80.
    Sasu S, LaVerda D, Qureshi N, Golenbock DT, Beasley D (2001) Chlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation. Circ Res 89: 244–250PubMedGoogle Scholar
  81. 81.
    Opitz B, Forster S, Hocke AC, Maass M, Schmeck B, Hippenstiel S, Suttorp N, Krull M (2005) Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ Res 96: 319–326PubMedGoogle Scholar
  82. 82.
    Rottenberg ME, Gigliotti RA, Gigliotti D, Ceausu M, Une C, Levitsky V, Wigzell H (2000) Regulation and role of IFN-gamma in the innate resistance to infection with Chlamydia pneumoniae. J Immunol 164: 4812–4818PubMedGoogle Scholar
  83. 83.
    Hassanain HH, Chon SY, Gupta SL (1993) Differential regulation of human indoleamine 2,3-dioxygenase gene expression by interferons-gamma and-alpha. Analysis of the regulatory region of the gene and identification of an interferon-gamma-inducible DNA-binding factor. J Biol Chem. 268: 5077–5084PubMedGoogle Scholar
  84. 84.
    Thomas SM, Garrity LF, Brandt CR, Schobert CS, Feng GS, Taylor MW, Carlin JM, Byrne GI (1993) IFN-gamma-mediated antimicrobial response. Indoleamine 2,3-dioxygenase-deficient mutant host cells no longer inhibit intracellular Chlamydia spp. or Toxoplasma growth. J Immunol 150: 5529–5534PubMedGoogle Scholar
  85. 85.
    Summersgill JT, Sahney NN, Gaydos CA, Quinn TC, Ramirez JA (1995) Inhibition of Chlamydia pneumoniae growth in HEp-2 cells pretreated with gamma interferon and tumor necrosis factor alpha. Infec Immu 63: 2801–2803Google Scholar
  86. 86.
    Igietseme JU, Perry LL, Ananaba GA, Uriri IM, Ojior OO, Kumar SN, Caldwell HD (1998) Chlamydial infection in inducible nitric oxide synthase knockout mice. Infect Immun 66: 1282–1286PubMedGoogle Scholar
  87. 87.
    Rottenberg ME, Gigliotti Rothfuchs AC, Gigliotti D, Svanholm C, Bandholtz L, Wigzell H (1999) Role of innate and adaptive immunity in the outcome of primary infection with Chlamydia pneumoniae, as analyzed in genetically modified mice. J Immunol 162: 2829–2836PubMedGoogle Scholar
  88. 88.
    Magee DM, Williams DM, Smith JG, Bleicker CA, Grubbs BG, Schachter J, Rank RG (1995) Role of CD8 T cells in primary Chlamydia infection. Infect Immun 63: 516–521PubMedGoogle Scholar
  89. 89.
    Su H, Caldwell HD (1995) CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. Infect Immun 63: 3302–3308PubMedGoogle Scholar
  90. 90.
    Buzoni-Gatel D, Guilloteau L, Bernard F, Bernard S, Chardes T, Rocca A (1992) Protection against Chlamydia psittaci in mice conferred by Lyt-2+ T cells. Immunology 77: 284–288PubMedGoogle Scholar
  91. 91.
    Yang ZP, Kuo CC, Grayston JT (1993) A mouse model of Chlamydia pneumoniae strain TWAR pneumonitis. Infect Immun 61: 2037–2040PubMedGoogle Scholar
  92. 92.
    Kaukoranta-Tolvanen SE, Laurila AL, Saikku P, Leinonen M, Laitinen K (1995) Experimental Chlamydia pneumoniae infection in mice: effect of reinfection and passive immunization. Microb Pathog 18: 279–288PubMedGoogle Scholar
  93. 93.
    Wizel B, Starcher BC, Samten B, Chroneos Z, Barnes PF, Dzuris J, Higashimoto Y, Appella E, Sette A (2002) Multiple Chlamydia pneumoniae antigens prime CD8+ Tc1 responses that inhibit intracellular growth of this vacuolar pathogen. J Immunol 169: 2524–2535PubMedGoogle Scholar
  94. 94.
    Penttila JM, Anttila M, Varkila K, Puolakkainen M, Sarvas M, Makela PH, Rautonen N (1999) Depletion of CD8+ cells abolishes memory in acquired immunity against Chlamydia pneumoniae in BALB/c mice. Immunology 97: 490–496PubMedGoogle Scholar
  95. 95.
    Penttila JM, Anttila M, Puolakkainen M, Laurila A, Varkila K, Sarvas M, Makela PH, Rautonen N. 1998 Local immune responses to Chlamydia pneumoniae in the lungs of BALB/c mice during primary infection and reinfection. Infect Immun 66: 5113–5118PubMedGoogle Scholar
  96. 96.
    Halme S, Latvala J, Karttunen R, Palatsi I, Saikku P, Surcel HM (2000) Cellmediated immune response during primary Chlamydia pneumoniae infection. Infect Immun 68: 7156–7158PubMedGoogle Scholar
  97. 97.
    Beatty PR, Stephens RS (1994) CD8+ T lymphocyte-mediated lysis of Chlamydia-infected L cells using an endogenous antigen pathway. J Immunol 153: 4588–4595PubMedGoogle Scholar
  98. 98.
    Starnbach MN, Bevan MJ, Lampe MF (1994) Protective cytotoxic T lymphocytes are induced during murine infection with Chlamydia trachomatis.J Immunol 153: 5183–5189PubMedGoogle Scholar
  99. 99.
    Vuola JM, Puurula V, Anttila M, Makela PH, Rautonen N (2000) Acquired immunity to Chlamydia pneumoniae is dependent on gamma interferon in two mouse strains that initially differ in this respect after primary challenge. Infect Immun 68: 960–964PubMedGoogle Scholar
  100. 100.
    Pinchuk I, Starcher BC, Livingston B, Tvninnereim A, Wu S, Appella E, Sidney J, Sette A, Wizel B (2005) A CD8+ T cell heptaepitope minigene vaccine induces protective immunity against Chlamydia pneumoniae. J Immunol 174: 5729–5739PubMedGoogle Scholar
  101. 101.
    Penttila T, Tammiruusu A, Liljestrom P, Sarvas M, Makela PH, Vuola JM, Puolakkainen M (2004) DNA immunization followed by a viral vector booster in a Chlamydia pneumoniae mouse model. Vaccine 22: 3386–3394PubMedGoogle Scholar
  102. 102.
    Campbell LA, Kuo CC, Wang SP, Grayston JT (1990) Serological response to Chlamydia pneumoniae infection. J Clin Microbiol 28: 1261–1264PubMedGoogle Scholar
  103. 103.
    Christiansen G, Ostergaard L, Birkelund S (1997) Molecular biology of the Chlamydia pneumoniae surface. Scan J Infec Dis Supp 104: 5–10Google Scholar
  104. 104.
    Huittinen T, Hahn D, Anttila T, Wahlstrom E, Saikku P, Leinonen M (2001) Host immune response to Chlamydia pneumoniae heat shock protein 60 is associated with asthma. Eur Respir J 17: 1078–1082PubMedGoogle Scholar
  105. 105.
    Kuo CC, Jackson LA, Campbell LA, Grayston JT (1995) Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 8: 451–461PubMedGoogle Scholar
  106. 106.
    Hackstadt T, Fischer ER, Scidmore MA, Rockey DD, Heinzen RA (1997) Origins and functions of the chlamydial inclusion. Trends Microbiol 5: 288–293PubMedGoogle Scholar
  107. 107.
    Coombes BK, Mahony JB (2002) Identification of MEK-and phosphoinositide 3-kinase-dependent signalling as essential events during Chlamydia pneumoniae invasion of HEp2 cells. Cell Microbiol 4: 447–460PubMedGoogle Scholar
  108. 108.
    Hackstadt T (1999) Cell biology. In: RS Stephens (ed): Chlamydia: Intracellularbiology, pathogenesis and immunity, pp. 101–138, ASM Press, Washington, D.C.Google Scholar
  109. 109.
    Moulder JW (1991) Interaction of chlamydiae and host cells in vitro. Microbiol Rev 55: 143–190PubMedGoogle Scholar
  110. 110.
    Gieffers J, Rupp J, Gebert A, Solbach W, Klinger M (2004) First-choice antibiotics at subinhibitory concentrations induce persistence of Chlamydia pneumoniae. Antimicrob Agents Chemother 48: 1402–1405PubMedGoogle Scholar
  111. 111.
    Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P (2004) Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72: 1843–1855PubMedGoogle Scholar
  112. 112.
    Kutlin A, Roblin PM, Hammerschlag MR (1999) In vitro activities of azithromycin and ofloxacin against Chlamydia pneumoniae in a continuous-infection model. Antimicrob Agents Chemother 43: 2268–2272PubMedGoogle Scholar
  113. 113.
    Beatty WL, Byrne GI, Morrison RP (1993) Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc Natl Acad Sci USA 90: 3998–4002PubMedGoogle Scholar
  114. 114.
    Byrne GI, Ojcius DM (2004) Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol 2: 802–808PubMedGoogle Scholar
  115. 115.
    Vandahl BB, Birkelund S, Demol H, Hoorelbeke B, Christiansen G, Vandekerckhove J, Gevaert K (2001) Proteome analysis of the Chlamydia pneumoniae elementary body. Electrophoresis 22: 1204–1223PubMedGoogle Scholar
  116. 116.
    Shaw AC, Gevaert K, Demol H, Hoorelbeke B, Vandekerckhove J, Larsen MR, Roepstorff P, Holm A, Christiansen G, Birkelund S (2002) Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2: 164–186PubMedGoogle Scholar
  117. 117.
    Stephens RS, Mullenbach G, Sanchez-Pescador R, Agabian N (1986) Sequence analysis of the major outer membrane protein gene from Chlamydia trachomatis serovar L2. J Bacteriol 168: 1277–1282PubMedGoogle Scholar
  118. 118.
    Millman KL, Tavare S, Dean D (2001) Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. J Bacteriol 183: 5997–6008PubMedGoogle Scholar
  119. 119.
    Hatch TP (1999) Development Biology. In: RS Stephens (ed): Chlamydia: Intracellular biology, pathogenesis, and immunity. ASM Press, Washington, DC, 29–67Google Scholar
  120. 120.
    Stephens RS, Koshiyama K, Lewis E, Kubo A (2001) Heparin-binding outer membrane protein of chlamydiae. Mol Microbiol 40: 691–699PubMedGoogle Scholar
  121. 121.
    McCoy AJ, Sandlin RC, Maurelli AT (2003) In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol 185: 1218–1228PubMedGoogle Scholar
  122. 122.
    Hesse L, Bostock J, Dementin S, Blanot D, Mengin-Lecreulx D, Chopra I (2003) Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate: amino acid ligase activity. J Bacteriol 185: 6507–6512PubMedGoogle Scholar
  123. 123.
    Chopra I, Storey C, Falla TJ, Pearce JH (1998) Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited. Microbiology 144: 2673–2678PubMedGoogle Scholar
  124. 124.
    Fox A, Rogers JC, Gilbart J, Morgan S, Davis CH, Knight S, Wyrick PB (1990) Muramic acid is not detectable in Chlamydia psittaci or Chlamydia trachomatis by gas chromatography-mass spectrometry. Infect Immun 58: 835–837PubMedGoogle Scholar
  125. 125.
    Moulder JW (1993) Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan? Infect Agents Dis 2: 87–99PubMedGoogle Scholar
  126. 126.
    Bavoil PM, Hsia R, Ojcius DM (2000) Closing in on Chlamydia and its intracellular bag of tricks. Microbiology 146: 2723–2731PubMedGoogle Scholar
  127. 127.
    Kol A, Sukhova GK, Lichtman AH, Libby P (1998) Chlamydial heat shock protein 60 localizes in human atheroma and regulates macrophage tumor necrosis factor-alpha and matrix metalloproteinase expression. Circulation 98: 300–307PubMedGoogle Scholar
  128. 128.
    Beatty WL, Morrison RP, Byrne GI (1995) Reactivation of persistent Chlamydia trachomatis infection in cell culture. Infect Immun 63: 199–205PubMedGoogle Scholar
  129. 129.
    Morrison RP, Belland RJ, Lyng K, Caldwell HD (1989) Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. J Exp Med 170: 1271–1283PubMedGoogle Scholar
  130. 130.
    Patton DL, Sweeney YT, Kuo CC (1994) Demonstration of delayed hypersensitivity in Chlamydia trachomatis salpingitis in monkeys: a pathogenic mechanism of tubal damage. J Infect Dis 169: 680–683PubMedGoogle Scholar
  131. 131.
    Wagar EA, Schachter J, Bavoil P, Stephens RS (1990) Differential human serologic response to two 60,000 molecular weight Chlamydia trachomatis antigens. J Infect Dis 162: 922–927PubMedGoogle Scholar
  132. 132.
    Zugel U, Kaufmann SH (1999) Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12: 19–39PubMedGoogle Scholar
  133. 133.
    Bachmaier K, Neu N, de la Maza LM, Pal S, Hessel A, Penninger JM (1999) Chlamydia infections and heart disease linked through antigenic mimicry. Science 283: 1335–1339PubMedGoogle Scholar
  134. 134.
    Schett G, Xu Q, Amberger A, van der ZR, Recheis H, Willeit J, Wick G (1995) Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J Clin Invest 96: 2569–2577PubMedGoogle Scholar
  135. 135.
    Peterson EM, de la Maza LM, Brade L, Brade H (1998) Characterization of a neutralizing monoclonal antibody directed at the lipopolysaccharide of Chlamydia pneumoniae. Infect Immun 66: 3848–3855PubMedGoogle Scholar
  136. 136.
    Belunis CJ, Mdluli KE, Raetz CR, Nano FE (1992) A novel 3-deoxy-D-mannooctulosonic acid transferase from Chlamydia trachomatis required for expression of the genus-specific epitope. J Biol Chem 267: 18702–18707PubMedGoogle Scholar
  137. 137.
    Brade L, Nano FE, Schlecht S, Schramek S, Brade H (1987) Antigenic and immunogenic properties of recombinants from Salmonella typhimurium and Salmonella minnesota rough mutants expressing in their lipopolysaccharide a genus-specific chlamydial epitope. Infect Immun 55: 482–486PubMedGoogle Scholar
  138. 138.
    Lobau S, Mamat U, Brabetz W, Brade H (1995) Molecular cloning, sequence analysis, and functional characterization of the lipopolysaccharide biosynthetic gene kdtA encoding 3-deoxy-alpha-D-manno-octulosonic acid transferase of Chlamydia pneumoniae strain TW-183. Mol Microbiol 18: 391–399PubMedGoogle Scholar
  139. 139.
    Ingalls RR, Rice PA, Qureshi N, Takayama K, Lin JS, Golenbock DT (1995) The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect Immun 63: 3125–3130Google Scholar
  140. 140.
    Ivins BE, Wyrick PB (1978) Response of C3H/HeJ and C3H/HeN mice and their peritoneal macrophages to the toxicity of Chlamydia psittaci elementary bodies. Infect Immun 22: 620–622PubMedGoogle Scholar
  141. 141.
    Collett BA, Newhall WJ, Jersild RA Jr, Jones RB (1989) Detection of surfaceexposed epitopes on Chlamydia trachomatis by immune electron microscopy. J Gen Microbiol 135: 85–94PubMedGoogle Scholar
  142. 142.
    Kuo CC, Chi EY (1987) Ultrastructural study of Chlamydia trachomatis surface antigens by immunogold staining with monoclonal antibodies. Infect Immun 55: 1324–1328PubMedGoogle Scholar
  143. 143.
    Birkelund S, Lundemose AG, Christiansen G (1989) Immunoelectron microscopy of lipopolysaccharide in Chlamydia trachomatis. Infect Immun 57: 3250–3253PubMedGoogle Scholar
  144. 144.
    Richmond SJ, Stirling P (1981) Localization of chlamydial group Antigen in McCoy cell monolayers infected with Chlamydia trachomatis or Chlamydia psittaci. Infect Immun 34: 561–570PubMedGoogle Scholar
  145. 145.
    Karimi ST, Schloemer RH, Wilde CE, III (1989) Accumulation of chlamydial lipopolysaccharide antigen in the plasma membranes of infected cells. Infect Immun 57: 1780–1785PubMedGoogle Scholar
  146. 146.
    Campbell S, Richmond SJ, Yates PS, Storey CC (1994) Lipopolysaccharide in cells infected by Chlamydia trachomatis. Microbiology 140: 1995–2002PubMedGoogle Scholar
  147. 147.
    Dong F, Zhong Y, Arulanandam B, Zhong G (2005) Production of a proteolytically active protein, chlamydial protease/proteasome-like activity factor, by five different Chlamydia species. Infect Immun 73: 1868–72PubMedGoogle Scholar
  148. 148.
    Shaw AC, Vandahl BB, Larsen MR, Roepstorff P, Gevaert K, Vandekerckhove J, Christiansen G, Birkelund S (2002) Characterization of a secreted Chlamydia protease. Cell Microbiol 4: 411–424PubMedGoogle Scholar
  149. 149.
    Heuer D, Brinkmann V, Meyer TF, Szczepek AJ (2003) Expression and translocation of chlamydial protease during acute and persistent infection of the epithelial HEp-2 cells with Chlamydophila (Chlamydia) pneumoniae. Cell Microbiol 5: 315–322PubMedGoogle Scholar
  150. 150.
    Sharma J, Bosnic AM, Piper JM, Zhong G (2004) Human antibody responses to a Chlamydia-secreted protease factor. Infect Immun 72: 7164–7171PubMedGoogle Scholar
  151. 151.
    Sharma J, Dong F, Pirbhai M, Zhong G (2005) Inhibition of proteolytic activity of a chlamydial proteasome/protease-like activity factor by antibodies from humans infected with Chlamydia trachomatis. Infect Immun 73: 4414–4419PubMedGoogle Scholar
  152. 152.
    Hsia RC, Pannekoek Y, Ingerowski E, Bavoil PM (1997) Type III secretion genes identify a putative virulence locus of Chlamydia. Mol Microbiol 25: 351–359PubMedGoogle Scholar
  153. 153.
    Matsumoto A (1981) Electron microscopic observations of surface projections and related intracellular structures of Chlamydia organisms. J Electron Microsc (Tokyo) 30: 315–320Google Scholar
  154. 154.
    Nichols BA, Setzer PY, Pang F, Dawson CR (1985) New view of the surface projections of Chlamydia trachomatis. J Bacteriol 164: 344–349PubMedGoogle Scholar
  155. 155.
    Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62: 379–433PubMedGoogle Scholar
  156. 156.
    Slepenkin A, Motin V, de la Maza LM, Peterson EM (2003) Temporal expression of type III secretion genes of Chlamydia pneumoniae. Infect Immun 71: 2555–2562PubMedGoogle Scholar
  157. 157.
    Airenne S, Surcel HM, Alakarppa H, Laitinen K, Paavonen J, Saikku P, Laurila A (1999) Chlamydia pneumoniae infection in human monocytes. Infect Immun 67: 1445–1449PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Matthias Krüll
    • 1
  • Norbert Suttorp
    • 1
  1. 1.Dept. Internal Medicine/Infectious Diseases and Pulmonary MedicineCharité Universitätsmedizin BerlinBerlin

Personalised recommendations