Advertisement

Community-acquired pneumonia: paving the way towards new vaccination concepts

  • Pablo D. Becker
  • Carlos A. Guzmán
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)

Abstract

Despite the availability of antimicrobial agents and vaccines, community-acquired pneumonia remains a serious problem. Severe forms tend to occur in very young children and among the elderly, since their immune competence is eroded by immaturity and immune senescence, respectively. The main etiologic agents differ according to patient age and geographic area. Streptococcus pneumoniae, Haemophilus influenzae, respiratory syncytial virus (RSV) and parainfluenza virus type 3 (PIV-3) are the most important pathogens in children, whereas influenza viruses are the leading cause of fatal pneumonia in the elderly. Effective vaccines are available against some of these organisms. However, there are still many agents against which vaccines are not available or the existent ones are suboptimal. To tackle this problem, empiric approaches are now being systematically replaced by rational vaccine design. This is facilitated by the growing knowledge in the fields of immunology, microbial pathogenesis and host response to infection, as well as by the availability of sophisticated strategies for antigen selection, potent immune modulators and efficient antigen delivery systems. Thus, a new generation of vaccines with improved safety and efficacy profiles compared to old and new agents is emerging. In this chapter, an overview is provided about currently available and new vaccination concepts.

Keywords

Influenza Virus Respiratory Syncytial Virus Severe Acute Respiratory Syndrome Influenza Vaccine Conjugate Vaccine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Girard MP, Cherian T, Pervikov Y, Kieny MP (2006) A review of vaccine research and development: Human acute respiratory infections. Vaccine 24: 4692–4700PubMedGoogle Scholar
  2. 2.
    Williams BG, Gouws E, Boschi-Pinto C, Bryce J, Dye C (2002) Estimates of world-wide distribution of child deaths from acute respiratory infections. Lancet Infect Dis 2: 25–32PubMedGoogle Scholar
  3. 3.
    Schmid D, Rouse B (2005) Respiratory viral vaccines. In: J Mestecky, M Lamm, W Strober, J Bienenstock, J McGhee, L Mayer (eds): Mucosal Immunology. Elsevier Inc., Philadelphia, 923–936Google Scholar
  4. 4.
    Stohr K, Esveld M (2004) Public health. Will vaccines be available for the next influenza pandemic? Science 306: 2195–2196PubMedGoogle Scholar
  5. 5.
    Kemble G, Greenberg H (2003) Novel generations of influenza vaccines. Vaccine 21: 1789–1795PubMedGoogle Scholar
  6. 6.
    Palache AM, Scheepers HS, de Regt V, van Ewijk P, Baljet M, Brands R, van Scharrenburg GJ (1999) Safety, reactogenicity and immunogenicity of Madin Darby Canine Kidney cell-derived inactivated influenza subunit vaccine. A meta-analysis of clinical studies. Dev Biol Stand 98: 115–125; discussion 133-114PubMedGoogle Scholar
  7. 7.
    Kistner O, Barrett PN, Mundt W, Reiter M, Schober-Bendixen S, Eder G, Dorner F (1999) Development of a Vero cell-derived influenza whole virus vaccine. Dev Biol Stand 98: 101–110; discussion 111PubMedGoogle Scholar
  8. 8.
    Brands R, Visser J, Medema J, Palache AM, van Scharrenburg GJ (1999) Influvac: a safe Madin Darby Canine Kidney (MDCK) cell culture-based influenza vaccine. Dev Biol Stand 98: 93–100; discussion 111PubMedGoogle Scholar
  9. 9.
    Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371: 37–43PubMedGoogle Scholar
  10. 10.
    Belshe R, Maassab H, Mendelman P (2004) Influenza vaccine-live. In: S Plotkin, W Orenstein (eds): Vaccines. Elsevier Inc., Philadelphia, 371–388Google Scholar
  11. 11.
    Cox RJ, Brokstad KA, Ogra P (2004) Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol 59: 1–15PubMedGoogle Scholar
  12. 12.
    Belshe RB (2004) Current status of live attenuated influenza virus vaccine in the US. Virus Res 103: 177–185PubMedGoogle Scholar
  13. 13.
    Treanor JJ, Kotloff K, Betts RF, Belshe R, Newman F, Iacuzio D, Wittes J, Bryant M (1999) Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated (TIV) influenza vaccines in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses. Vaccine 18: 899–906PubMedGoogle Scholar
  14. 14.
    Belshe RB, Nichol KL, Black SB, Shinefield H, Cordova J, Walker R, Hessel C, Cho I, Mendelman PM (2004) Safety, efficacy, and effectiveness of live, attenuated, cold-adapted influenza vaccine in an indicated population aged 5-49 years. Clin Infect Dis 39: 920–927PubMedGoogle Scholar
  15. 15.
    Belshe RB, Gruber WC, Mendelman PM, Mehta HB, Mahmood K, Reisinger K, Treanor J, Zangwill K, Hayden FG, Bernstein DI et al (2000) Correlates of immune protection induced by live, attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine. J Infect Dis 181: 1133–1137PubMedGoogle Scholar
  16. 16.
    Harper SA, Fukuda K, Uyeki TM, Cox NJ, Bridges CB (2004) Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 53: 1–40PubMedGoogle Scholar
  17. 17.
    Harper SA, Fukuda K, Uyeki TM, Cox NJ, Bridges CB (2005) Prevention and control of influenza. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 54: 1–40PubMedGoogle Scholar
  18. 18.
    Romanova J, Katinger D, Ferko B, Vcelar B, Sereinig S, Kuznetsov O, Stukova M, Erofeeva M, Kiselev O, Katinger H et al (2004) Live cold-adapted influenza A vaccine produced in Vero cell line. Virus Res 103: 187–193PubMedGoogle Scholar
  19. 19.
    Schumacher R, Adamina M, Zurbriggen R, Bolli M, Padovan E, Zajac P, Heberer M, Spagnoli GC (2004) Influenza virosomes enhance class I restricted CTL induction through CD4+ T cell activation. Vaccine 22: 714–723PubMedGoogle Scholar
  20. 20.
    Drape RJ, Macklin MD, Barr LJ, Jones S, Haynes JR, Dean HJ (2005) Epidermal DNA vaccine for influenza is immunogenic in humans. Vaccine 24: 4475–4481PubMedGoogle Scholar
  21. 21.
    Cassetti MC, Couch R, Wood J, Pervikov Y (2005) Report of meeting on the development of influenza vaccines with broad spectrum and long-lasting immune responses, World Health Organization, Geneva, Switzerland, 26-27 February 2004. Vaccine 23: 1529–1533Google Scholar
  22. 22.
    Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W (1999) A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 5: 1157–1163PubMedGoogle Scholar
  23. 23.
    Fiers W, De Filette M, Birkett A, Neirynck S, Min Jou W (2004) A “universal” human influenza A vaccine. Virus Res 103: 173–176PubMedGoogle Scholar
  24. 24.
    Fan J, Liang X, Horton MS, Perry HC, Citron MP, Heidecker GJ, Fu TM, Joyce J, Przysiecki CT, Keller PM et al (2004) Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine 22: 2993–3003PubMedGoogle Scholar
  25. 25.
    Durbin AP, Karron RA (2003) Progress in the development of respiratory syncytial virus and parainfluenza virus vaccines. Clin Infect Dis 37: 1668–1677PubMedGoogle Scholar
  26. 26.
    Tao T, Skiadopoulos MH, Durbin AP, Davoodi F, Collins PL, Murphy BR (1999) A live attenuated chimeric recombinant parainfluenza virus (PIV) encoding the internal proteins of PIV type 3 and the surface glycoproteins of PIV type 1 induces complete resistance to PIV1 challenge and partial resistance to PIV3 challenge. Vaccine 17: 1100–1108PubMedGoogle Scholar
  27. 27.
    Kapikian AZ, Mitchell RH, Chanock RM, Shvedoff RA, Stewart CE (1969) An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine. Am J Epidemiol 89: 405–421PubMedGoogle Scholar
  28. 28.
    Glezen WP, Taber LH, Frank AL, Kasel JA (1986) Risk of primary infection and reinfection with respiratory syncytial virus. Am J Dis Child 140: 543–546PubMedGoogle Scholar
  29. 29.
    Simoes EA (2002) Immunoprophylaxis of respiratory syncytial virus: global experience. Respir Res 3 (Suppl 1): S26–33Google Scholar
  30. 30.
    Munoz FM, Piedra PA, Glezen WP (2003) Safety and immunogenicity of respi ratory syncytial virus purified fusion protein-2 vaccine in pregnant women. Vaccine 21: 3465–3467PubMedGoogle Scholar
  31. 31.
    Piedra PA, Grace S, Jewell A, Spinelli S, Hogerman DA, Malinoski F, Hiatt PW (1998) Sequential annual administration of purified fusion protein vaccine against respiratory syncytial virus in children with cystic fibrosis. Pediatr Infect Dis J 17: 217–224PubMedGoogle Scholar
  32. 32.
    Plotnicky H, Siegrist CA, Aubry JP, Bonnefoy JY, Corvaia N, Nguyen TN, Power UF (2003) Enhanced pulmonary immunopathology following neonatal priming with formalin-inactivated respiratory syncytial virus but not with the BBG2NA vaccine candidate. Vaccine 21: 2651–2660PubMedGoogle Scholar
  33. 33.
    Power UF, Nguyen TN, Rietveld E, de Swart RL, Groen J, Osterhaus AD, de Groot R, Corvaia N, Beck A, Bouveret-Le-Cam N et al (2001) Safety and immunogenicity of a novel recombinant subunit respiratory syncytial virus vaccine (BBG2Na) in healthy young adults. J Infect Dis 184: 1456–1460PubMedGoogle Scholar
  34. 34.
    Power UF, Plotnicky H, Blaecke A, Nguyen TN (2003) The immunogenicity, protective efficacy and safety of BBG2Na, a subunit respiratory syncytial virus (RSV) vaccine candidate, against RSV-B. Vaccine 22: 168–176PubMedGoogle Scholar
  35. 35.
    Wright PF, Karron RA, Belshe RB, Thompson J, Crowe JE Jr, Boyce TG, Halburnt LL, Reed GW, Whitehead SS, Anderson EL et al (2000) Evaluation of a live, cold-passaged, temperature-sensitive, respiratory syncytial virus vaccine candidate in infancy. J Infect Dis 182: 1331–1342PubMedGoogle Scholar
  36. 36.
    Schmidt AC, McAuliffe JM, Murphy BR, Collins PL (2001) Recombinant bovine/human parainfluenza virus type 3 (B/HPIV3) expressing the respiratory syncytial virus (RSV) G and F proteins can be used to achieve simultaneous mucosal immunization against RSV and HPIV3. J Virol 75: 4594–4603PubMedGoogle Scholar
  37. 37.
    Tang RS, MacPhail M, Schickli JH, Kaur J, Robinson CL, Lawlor HA, Guzzetta JM, Spaete RR, Haller AA (2004) Parainfluenza virus type 3 expressing the native or soluble fusion (F) Protein of Respiratory Syncytial Virus (RSV) confers protection from RSV infection in African green monkeys. J Virol 78: 11198–11207PubMedGoogle Scholar
  38. 38.
    Peiris JS, Guan Y, Yuen KY (2004) Severe acute respiratory syndrome. Nat Med 10: S88–97Google Scholar
  39. 39.
    Jiang S, He Y, Liu S (2005) SARS vaccine development. Emerg Infect Dis 11: 1016–1020PubMedGoogle Scholar
  40. 40.
    Holmes KV (2003) SARS-associated coronavirus. N Engl J Med 348: 1948–1951PubMedGoogle Scholar
  41. 41.
    Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426: 450–454PubMedGoogle Scholar
  42. 42.
    Wong SK, Li W, Moore MJ, Choe H, Farzan M (2004) A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2 J Biol Chem 279: 3197–3201PubMedGoogle Scholar
  43. 43.
    Yang ZY, Kong WP, Huang Y, Roberts A, Murphy BR, Subbarao K, Nabel GJ (2004) A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428: 561–564PubMedGoogle Scholar
  44. 44.
    Wang S, Chou TH, Sakhatskyy PV, Huang S, Lawrence JM, Cao H, Huang X, Lu S (2005) Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein produced from the mammalian expression system. J Virol 79: 1906–1910PubMedGoogle Scholar
  45. 45.
    Bukreyev A, Lamirande EW, Buchholz UJ, Vogel LN, Elkins WR, St Claire M, Murphy BR, Subbarao K, Collins PL (2004) Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363: 2122–2127PubMedGoogle Scholar
  46. 46.
    Weingartl H, Czub M, Czub S, Neufeld J, Marszal P, Gren J, Smith G, Jones S, Proulx R, Deschambault Y et al (2004) Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol 78: 12672–12676PubMedGoogle Scholar
  47. 47.
    Liu S, Xiao G, Chen Y, He Y, Niu J, Escalante CR, Xiong H, Farmar J, Debnath AK, Tien P et al (2004) Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363: 938–947PubMedGoogle Scholar
  48. 48.
    Yang ZY, Werner HC, Kong WP, Leung K, Traggiai E, Lanzavecchia A, Nabel GJ (2005) Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci USA 102: 797–801PubMedGoogle Scholar
  49. 49.
    Zhu MS, Pan Y, Chen HQ, Shen Y, Wang XC, Sun YJ, Tao KH (2004) Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine. Immunol Lett 92: 237–243PubMedGoogle Scholar
  50. 50.
    Buchholz UJ, Bukreyev A, Yang L, Lamirande EW, Murphy BR, Subbarao K, Collins PL (2004) Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci USA 101: 9804–9809PubMedGoogle Scholar
  51. 51.
    Howell MR, Nang RN, Gaydos CA, Gaydos JC (1998) Prevention of adenoviral acute respiratory disease in Army recruits: cost-effectiveness of a military vaccination policy. Am J Prev Med 14: 168–175PubMedGoogle Scholar
  52. 52.
    Schmidt AC, Couch RB, Galasso GJ, Hayden FG, Mills J, Murphy BR, Chanock RM (2001) Current research on respiratory viral infections: Third International Symposium. Antiviral Res 50: 157–196PubMedGoogle Scholar
  53. 53.
    Janoff E, Briles D, Rubins J (2005) Respiratory bacterial vaccines. In: J Mestecky, M Lamm, W Strober, J Bienenstock, J McGhee, L Mayer (eds), Mucosal Immunology. Elsevier Inc, Philadelphia, 905–921Google Scholar
  54. 54.
    Fedson D, Musher D (2004) Pneumococcal polysaccharide. In: S Plotkin, W Orenstein (eds): Vaccines. Elsevier Inc., Philadelphia, 529–588Google Scholar
  55. 55.
    Ortqvist A, Hedlund J, Burman LA, Elbel E, Hofer M, Leinonen M, Lindblad I, Sundelof B, Kalin M (1998) Randomised trial of 23-valent pneumococcal capsular polysaccharide vaccine in prevention of pneumonia in middle-aged and elderly people. Swedish Pneumococcal Vaccination Study Group. Lancet 351: 399–403PubMedGoogle Scholar
  56. 56.
    Munoz FM, Englund JA, Cheesman CC, Maccato ML, Pinell PM, Nahm MH, Mason EO, Kozinetz CA, Thompson RA, Glezen WP (2001) Maternal immunization with pneumococcal polysaccharide vaccine in the third trimester of gestation. Vaccine 20: 826–837PubMedGoogle Scholar
  57. 57.
    Klugman KP, Madhi SA, Huebner RE, Kohberger R, Mbelle N, Pierce N (2003) A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N Engl J Med 349: 1341–1348PubMedGoogle Scholar
  58. 58.
    Fireman B, Black SB, Shinefield HR, Lee J, Lewis E, Ray P (2003) Impact of the pneumococcal conjugate vaccine on otitis media. Pediatr Infect Dis J 22: 10–16PubMedGoogle Scholar
  59. 59.
    Eskola D, Black S, Shinefield H (2004) Pneumococcal conjugate vaccine. In: S Plotkin, W Orenstein (eds): Vaccines. Elsevier Inc., Philadelphia, 589–624Google Scholar
  60. 60.
    Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM, Lynfield R, Reingold A, Cieslak PR, Pilishvili T, Jackson D et al (2003) Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med 348: 1737–1746PubMedGoogle Scholar
  61. 61.
    Bogaert D, Hermans PW, Adrian PV, Rumke HC, de Groot R (2004) Pneumococcal vaccines: an update on current strategies. Vaccine 22: 2209–2220PubMedGoogle Scholar
  62. 62.
    Shapiro ED, Ward JI (1991) The epidemiology and prevention of disease caused by Haemophilus influenzae type b. Epidemiol Rev 13: 113–142PubMedGoogle Scholar
  63. 63.
    Peltola H, Kayhty H, Virtanen M, Makela PH (1984) Prevention of Hemophilus influenzae type b bacteremic infections with the capsular polysaccharide vaccine. N Engl J Med 310: 1561–1566PubMedGoogle Scholar
  64. 64.
    Robbins JB, Schneerson R, Anderson P, Smith DH (1996) The 1996 Albert Lasker Medical Research Awards. Prevention of systemic infections, especially meningitis, caused by Haemophilus influenzae type b. Impact on public health and implications for other polysaccharide-based vaccines. Jama 276: 1181–1185PubMedGoogle Scholar
  65. 65.
    Decker MD, Edwards KM (1998) Haemophilus influenzae type b vaccines: history, choice and comparisons. Pediatr Infect Dis J 17: S113–116Google Scholar
  66. 66.
    Mulholland EK, Hoestermann A, Ward JI, Maine N, Ethevenaux C, Greenwood BM (1996) The use of Haemophilus influenzae type b-tetanus toxoid conjugate vaccine mixed with diphtheria-tetanus-pertussis vaccine in Gambian infants. Vaccine 14: 905–909PubMedGoogle Scholar
  67. 67.
    Mulholland K, Hilton S, Adegbola R, Usen S, Oparaugo A, Omosigho C, Weber M, Palmer A, Schneider G, Jobe K et al (1997) Randomised trial of Haemophilus influenzae type-b tetanus protein conjugate vaccine [corrected] for prevention of pneumonia and meningitis in Gambian infants. Lancet 349: 1191–1197PubMedGoogle Scholar
  68. 68.
    Heath PT (1998) Haemophilus influenzae type b conjugate vaccines: a review of efficacy data. Pediatr Infect Dis J 17: S117–122Google Scholar
  69. 69.
    Lagos R, Horwitz I, Toro J, San Martin O, Abrego P, Bustamante C, Wasserman SS, Levine OS, Levine MM (1996) Large scale, postlicensure, selective vaccination of Chilean infants with PRP-T conjugate vaccine: practicality and effectiveness in preventing invasive Haemophilus influenzae type b infections. Pediatr Infect Dis J 15: 216–222PubMedGoogle Scholar
  70. 70.
    Akkoyunlu M, Janson H, Ruan M, Forsgren A (1996) Biological activity of serum antibodies to a nonacylated form of lipoprotein D of Haemophilus influenzae. Infect Immun 64: 4586–4592PubMedGoogle Scholar
  71. 71.
    Kyd JM, Dunkley ML, Cripps AW (1995) Enhanced respiratory clearance of nontypeable Haemophilus influenzae following mucosal immunization with P6 in a rat model. Infect Immun 63: 2931–2940PubMedGoogle Scholar
  72. 72.
    Hotomi M, Yamanaka N, Shimada J, Suzumoto M, Ikeda Y, Sakai A, Arai J, Green B (2002) Intranasal immunization with recombinant outer membrane protein P6 induces specific immune responses against nontypeable Haemophilus influenzae. Int J Pediatr Otorhinolaryngol 65: 109–116PubMedGoogle Scholar
  73. 73.
    Bertot GM, Becker PD, Guzman CA, Grinstein S (2004) Intranasal vaccination with recombinant P6 protein and adamantylamide dipeptide as mucosal adjuvant confers efficient protection against otitis media and lung infection by nontypeable Haemophilus influenzae. J Infect Dis 189: 1304–1312PubMedGoogle Scholar
  74. 74.
    Baraff LJ, Cody CL, Cherry JD (1984) DTP-associated reactions: an analysis by injection site, manufacturer, prior reactions, and dose. Pediatrics 73: 31–36PubMedGoogle Scholar
  75. 75.
    Sato Y, Kimura M, Fukumi H (1984) Development of a pertussis component vaccine in Japan. Lancet 1: 122–126PubMedGoogle Scholar
  76. 76.
    AdHocGroupfortheStudyofPertussisVaccines (1988) Placebo-controlled trial of two acellular pertussis vaccines in Sweden-protective efficacy and adverse events. Ad Hoc Group for the Study of Pertussis Vaccines. Lancet 331: 955–960Google Scholar
  77. 77.
    Storsaeter J, Hallander H, Farrington CP, Olin P, Mollby R, Miller E (1990) Secondary analyses of the efficacy of two acellular pertussis vaccines evaluated in a Swedish phase III trial. Vaccine 8: 457–461PubMedGoogle Scholar
  78. 78.
    Guiso N, Boursaux-Eude C, Weber C, Hausman SZ, Sato H, Iwaki M, Kamachi K, Konda T, Burns DL (2001) Analysis of Bordetella pertussis isolates collected in Japan before and after introduction of acellular pertussis vaccines. Vaccine 19: 3248–3252PubMedGoogle Scholar
  79. 79.
    Campins-Marti M, Cheng HK, Forsyth K, Guiso N, Halperin S, Huang LM, Mertsola J, Oselka G, Ward J, Wirsing von Konig CH et al (2001) Recommendations are needed for adolescent and adult pertussis immunisation: rationale and strategies for consideration. Vaccine 20: 641–646PubMedGoogle Scholar
  80. 80.
    Weber C, Boursaux-Eude C, Coralie G, Caro V, Guiso N (2001) Polymorphism of Bordetella pertussis isolates circulating for the last 10 years in France, where a single effective whole-cell vaccine has been used for more than 30 years. J Clin Microbiol 39: 4396–4403PubMedGoogle Scholar
  81. 81.
    Denoel P, Godfroid F, Guiso N, Hallander H, Poolman J (2005) Comparison of acellular pertussis vaccines-induced immunity against infection due to Bordetellapertussis variant isolates in a mouse model. Vaccine 23: 5333–5341PubMedGoogle Scholar
  82. 82.
    van Amersfoorth SC, Schouls LM, van der Heide HG, Advani A, Hallander HO, Bondeson K, von Konig CH, Riffelmann M, Vahrenholz C, Guiso N et al (2005) Analysis of Bordetella pertussis populations in European countries with different vaccination policies. J Clin Microbiol 43: 2837–2843PubMedGoogle Scholar
  83. 83.
    Penttila T, Vuola JM, Puurula V, Anttila M, Sarvas M, Rautonen N, Makela PH, Puolakkainen M (2000) Immunity to Chlamydia pneumoniae induced by vaccination with DNA vectors expressing a cytoplasmic protein (Hsp60) or outer membrane proteins (MOMP and Omp2). Vaccine 19: 1256–1265PubMedGoogle Scholar
  84. 84.
    Penttila T, Tammiruusu A, Liljestrom P, Sarvas M, Makela PH, Vuola JM, Puolakkainen M (2004) DNA immunization followed by a viral vector booster in a Chlamydia pneumoniae mouse model. Vaccine 22: 3386–3394PubMedGoogle Scholar
  85. 85.
    Pinchuk I, Starcher BC, Livingston B, Tvninnereim A, Wu S, Appella E, Sidney J, Sette A, Wizel B (2005) A CD8+ T cell heptaepitope minigene vaccine induces protective immunity against Chlamydia pneumoniae. J Immunol 174: 5729–5739PubMedGoogle Scholar
  86. 86.
    Finco O, Bonci A, Agnusdei M, Scarselli M, Petracca R, Norais N, Ferrari G, Garaguso I, Donati M, Sambri V et al (2005) Identification of new potential vaccine candidates against Chlamydia pneumoniae by multiple screenings. Vaccine 23: 1178–1188PubMedGoogle Scholar
  87. 87.
    Montigiani S, Falugi F, Scarselli M, Finco O, Petracca R, Galli G, Mariani M, Manetti R, Agnusdei M, Cevenini R et al (2002) Genomic approach for analysis of surface proteins in Chlamydia pneumoniae. Infect Immun 70: 368–379PubMedGoogle Scholar
  88. 88.
    Yang YP, Myers LE, McGuinness U, Chong P, Kwok Y, Klein MH, Harkness RE (1997) The major outer membrane protein, CD, extracted from Moraxella (Branhamella) catarrhalis is a potential vaccine antigen that induces bactericidal antibodies. FEMS Immunol Med Microbiol 17: 187–199PubMedGoogle Scholar
  89. 89.
    Chen D, McMichael JC, VanDerMeid KR, Hahn D, Mininni T, Cowell J, Eldridge J (1996) Evaluation of purified UspA from Moraxella catarrhalis as a vaccine in a murine model after active immunization. Infect Immun 64: 1900–1905PubMedGoogle Scholar
  90. 90.
    McMichael JC (2000) Progress toward the development of a vaccine to prevent Moraxella (Branhamella) catarrhalis infections. Microbes Infect 2: 561–568PubMedGoogle Scholar
  91. 91.
    Jiao X, Hirano T, Hou Y, Gu XX (2002) Specific immune responses and enhancement of murine pulmonary clearance of Moraxella catarrhalis by intranasal immunization with a detoxified lipooligosaccharide conjugate vaccine. Infect Immun 70: 5982–5989PubMedGoogle Scholar
  92. 92.
    Yu S, Gu XX (2005) Synthesis and characterization of lipooligosaccharidebased conjugate vaccines for serotype B Moraxella catarrhalis. Infect Immun 73: 2790–2796PubMedGoogle Scholar
  93. 93.
    Baseman JB, Tully JG (1997) Mycoplasmas: sophisticated, reemerging, and burdened by their notoriety. Emerg Infect Dis 3: 21–32PubMedGoogle Scholar
  94. 94.
    Smith CB, Friedewald WT, Chanock RM (1967) Inactivated Mycoplasma pneumoniae vaccine. Evaluation in volunteers. Jama 199: 353–358PubMedGoogle Scholar
  95. 95.
    Waites KB, Talkington DF (2004) Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 17: 697–728PubMedGoogle Scholar
  96. 96.
    Brenner DJ, Steigerwalt AG, McDade JE (1979) Classification of the Legionnaires’ disease bacterium: Legionella pneumophila, genus novum, species nova, of the family Legionellaceae, familia nova. Ann Intern Med 90: 656–658PubMedGoogle Scholar
  97. 97.
    McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, Dowdle WR (1977) Legionnaires’ disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 297: 1197–1203PubMedGoogle Scholar
  98. 98.
    Blander SJ, Horwitz MA (1989) Vaccination with the major secretory protein of Legionella pneumophila induces cell-mediated and protective immunity in a guinea pig model of Legionnaires’ disease. J Exp Med 169: 691–705PubMedGoogle Scholar
  99. 99.
    Eisenstein TK, Tamada R, Meissler J, Flesher A, Oels HC (1984) Vaccination against Legionella pneumophila: serum antibody correlates with protection induced by heat-killed or acetone-killed cells against intraperitoneal but not aerosol infection in guinea pigs. Infect Immun 45: 685–691PubMedGoogle Scholar
  100. 100.
    Ricci ML, Torosantucci A, Scaturro M, Chiani P, Baldassarri L, Pastoris MC (2005) Induction of protective immunity by Legionella pneumophila flagellum in an A/J mouse model. Vaccine 23: 4811–4820PubMedGoogle Scholar
  101. 101.
    Friedman H, Klein TW, Widen R, Newton C, Blanchard DK, Yamamoto Y (1988) Legionella pneumophila immunity and immunomodulation: nature and mechanisms. Adv Exp Med Biol 239: 327–341PubMedGoogle Scholar
  102. 102.
    Blander SJ, Horwitz MA (1993) Major cytoplasmic membrane protein of Legionella pneumophila, a genus common antigen and member of the hsp 60 family of heat shock proteins, induces protective immunity in a guinea pig model of Legionnaires’ disease. J Clin Invest 91: 717–723PubMedGoogle Scholar
  103. 103.
    Yoon WS, Park SH, Park YK, Park SC, Sin JI, Kim MJ (2002) Comparison of responses elicited by immunization with a Legionella species common lipoprotein delivered as naked DNA or recombinant protein. DNA Cell Biol 21: 99–107PubMedGoogle Scholar
  104. 104.
    Weeratna R, Stamler DA, Edelstein PH, Ripley M, Marrie T, Hoskin D, Hoffman PS (1994) Human and guinea pig immune responses to Legionella pneumophila protein antigens OmpS and Hsp60. Infect Immun 62: 3454–3462PubMedGoogle Scholar
  105. 105.
    Blander SJ, Breiman RF, Horwitz MA (1989) A live avirulent mutant Legionella pneumophila vaccine induces protective immunity against lethal aerosol challenge. J Clin Invest 83: 810–815PubMedGoogle Scholar
  106. 106.
    Cryz SJ Jr, Furer E, Cross AS, Wegmann A, Germanier R, Sadoff JC (1987) Safety and immunogenicity of a Pseudomonas aeruginosa O-polysaccharide toxin A conjugate vaccine in humans. J Clin Invest 80: 51–56PubMedGoogle Scholar
  107. 107.
    Cryz SJ Jr, Sadoff JC, Ohman D, Furer E (1988) Characterization of the human immune response to a Pseudomonas aeruginosa O-polysaccharide-toxin A conjugate vaccine. J Lab Clin Med 111: 701–707PubMedGoogle Scholar
  108. 108.
    Cryz SJ Jr, Wedgwood J, Lang AB, Ruedeberg A, Que JU, Furer E, Schaad UB (1994) Immunization of noncolonized cystic fibrosis patients against Pseudomonas aeruginosa. J Infect Dis 169: 1159–1162PubMedGoogle Scholar
  109. 109.
    Cryz SJ Jr, Lang A, Rudeberg A, Wedgwood J, Que JU, Furer E, Schaad U (1997) Immunization of cystic fibrosis patients with a Pseudomonas aeruginosa O-polysaccharide-toxin A conjugate vaccine. Behring Inst Mitt 38: 345–349Google Scholar
  110. 110.
    Schaad UB, Lang AB, Wedgwood J, Ruedeberg A, Que JU, Furer E, Cryz SJ, Jr (1991) Safety and immunogenicity of Pseudomonas aeruginosa conjugate A vaccine in cystic fibrosis. Lancet 338: 1236–1237PubMedGoogle Scholar
  111. 111.
    Lang AB, Schaad UB, Rudeberg A, Wedgwood J, Que JU, Furer E, Cryz SJ, Jr (1995) Effect of high-affinity anti-Pseudomonas aeruginosa lipopolysaccharide antibodies induced by immunization on the rate of Pseudomonas aeruginosa infection in patients with cystic fibrosis. J Pediatr 127: 711–717PubMedGoogle Scholar
  112. 112.
    Lang AB, Rudeberg A, Schoni MH, Que JU, Furer E, Schaad UB (2004) Vaccination of cystic fibrosis patients against Pseudomonas aeruginosa reduces the proportion of patients infected and delays time to infection. Pediatr Infect Dis J 23: 504–510PubMedGoogle Scholar
  113. 113.
    Zuercher AW, Imboden MA, Jampen S, Bosse D, Ulrich M, Chtioui H, Lauterburg BH, Lang AB (2005) Cellular immunity in healthy volunteers treated with an octavalent conjugate Pseudomonas aeruginosa vaccine. Clin Exp Immunol 142: 381–387PubMedGoogle Scholar
  114. 114.
    Larbig M, Mansouri E, Freihorst J, Tummler B, Kohler G, Domdey H, Knapp B, Hungerer KD, Hundt E, Gabelsberger J et al (2001) Safety and immunogenicity of an intranasal Pseudomonas aeruginosa hybrid outer membrane protein F-I vaccine in human volunteers. Vaccine 19: 2291–2297PubMedGoogle Scholar
  115. 115.
    Gocke K, Baumann U, Hagemann H, Gabelsberger J, Hahn H, Freihorst J, von Specht BU (2003) Mucosal vaccination with a recombinant OprF-I vaccine of Pseudomonas aeruginosa in healthy volunteers: comparison of a systemic vs. a mucosal booster schedule. FEMS Immunol Med Microbiol 37: 167–171PubMedGoogle Scholar
  116. 116.
    Pier G (2005) Application of vaccine technology to prevention of Pseudomonas aeruginosa infections. Expert Rev Vaccines 4: 645–656PubMedGoogle Scholar
  117. 117.
    Plotkin SA (2005) Vaccines: past, present and future. Nat Med 11: S5–11Google Scholar
  118. 118.
    Plotkin SA (2005) Six revolutions in vaccinology. Pediatr Infect Dis J 24: 1–9PubMedGoogle Scholar
  119. 119.
    Lambert PH, Liu M, Siegrist CA (2005) Can successful vaccines teach us how to induce efficient protective immune responses? Nat Med 11: S54–62Google Scholar
  120. 120.
    Plotkin SA (2003) Vaccines, vaccination, and vaccinology. J Infect Dis 187: 1349–1359PubMedGoogle Scholar
  121. 121.
    Mora M, Veggi D, Santini L, Pizza M, Rappuoli R (2003) Reverse vaccinology. Drug Discov Today 8: 459–464PubMedGoogle Scholar
  122. 122.
    Singh U, Shah PH, MacFarlane RC (2004) DNA content analysis on microarrays. Methods Mol Biol 270: 237–248PubMedGoogle Scholar
  123. 123.
    De Groot AS, Sbai H, Aubin CS, McMurry J, Martin W (2002) Immunoinformatics: Mining genomes for vaccine components. Immunol Cell Biol 80: 255–269PubMedGoogle Scholar
  124. 124.
    Sette A, Livingston B, McKinney D, Appella E, Fikes J, Sidney J, Newman M, Chesnut R (2001) The development of multi-epitope vaccines: epitope identification, vaccine design and clinical evaluation. Biologicals 29: 271–276PubMedGoogle Scholar
  125. 125.
    Rappuoli R, Covacci A (2003) Reverse vaccinology and genomics. Science 302: 602Google Scholar
  126. 126.
    Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3: 445–450PubMedGoogle Scholar
  127. 127.
    Stech J, Garn H, Wegmann M, Wagner R, Klenk HD (2005) A new approach to an influenza live vaccine: modification of the cleavage site of hemagglutinin. Nat Med 11: 683–689PubMedGoogle Scholar
  128. 128.
    Ozaki H, Govorkova EA, Li C, Xiong X, Webster RG, Webby RJ (2004) Generation of high-yielding influenza A viruses in African green monkey kidney (Vero) cells by reverse genetics. J Virol 78: 1851–1857PubMedGoogle Scholar
  129. 129.
    Wood JM, Robertson JS (2004) From lethal virus to life-saving vaccine: developing inactivated vaccines for pandemic influenza. Nat Rev Microbiol 2: 842–847PubMedGoogle Scholar
  130. 130.
    Subbarao K, Katz JM (2004) Influenza vaccines generated by reverse genetics. Curr Top Microbiol Immunol 283: 313–342PubMedGoogle Scholar
  131. 131.
    Kaiser J (2004) Influenza: girding for disaster. Facing down pandemic flu, the world’s defenses are weak. Science 306: 394–397PubMedGoogle Scholar
  132. 132.
    Holmgren J, Czerkinsky C (2005) Mucosal immunity and vaccines. Nat Med 11: S45–53Google Scholar
  133. 133.
    Schoen C, Stritzker J, Goebel W, Pilgrim S (2004) Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 294: 319–335PubMedGoogle Scholar
  134. 134.
    Vajdy M, Srivastava I, Polo J, Donnelly J, O’Hagan D, Singh M (2004) Mucosal adjuvants and delivery systems for protein-, DNA-and RNA-based vaccines. Immunol Cell Biol 82: 617–627PubMedGoogle Scholar
  135. 135.
    Eko FO, He Q, Brown T, McMillan L, Ifere GO, Ananaba GA, Lyn D, Lubitz W, Kellar KL, Black CM et al (2004) A novel recombinant multisubunit vaccine against Chlamydia. J Immunol 173: 3375–3382PubMedGoogle Scholar
  136. 136.
    Duncan J, Gilley R, Schafer D, Moldoveanu Z, Mestecky J (1996) Poly(lactideco-glycolide) microencapsulation of vaccines for mucosal immunization. In: H Kiyono, P Ogra, J McGhee (eds): Mucosal Vaccines. Academic Press, Inc., San Diego, 159–173Google Scholar
  137. 137.
    Tomasi M, Hearn T (1996) ISCOMs, liposomes, and oil-based vaccine delivery systems. In: H Kiyono, P Ogra, J McGhee (eds): Mucosal Vaccines. Academic Press, Inc., San Diego, 175–186Google Scholar
  138. 138.
    Copland MJ, Rades T, Davies NM, Baird MA (2005) Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 83: 97–105PubMedGoogle Scholar
  139. 139.
    Seo JY, Seong SY, Ahn BY, Kwon IC, Chung H, Jeong SY (2002) Cross-protective immunity of mice induced by oral immunization with pneumococcal surface adhesin a encapsulated in microspheres. Infect Immun 70: 1143–1149PubMedGoogle Scholar
  140. 140.
    de Wit E, Munster VJ, Spronken MI, Bestebroer TM, Baas C, Beyer WE, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2005) Protection of mice against lethal infection with highly pathogenic H7N7 influenza A virus by using a recombinant low-pathogenicity vaccine strain. J Virol 79: 12401–12407PubMedGoogle Scholar
  141. 141.
    Arnold H, Bumann D, Felies M, Gewecke B, Sorensen M, Gessner JE, Freihorst J, von Specht BU, Baumann U (2004) Enhanced immunogenicity in the murine airway mucosa with an attenuated Salmonella live vaccine expressing OprFOprI from Pseudomonas aeruginosa. Infect Immun 72: 6546–6553PubMedGoogle Scholar
  142. 142.
    Langermann S, Palaszynski SR, Burlein JE, Koenig S, Hanson MS, Briles DE, Stover CK (1994) Protective humoral response against pneumococcal infection in mice elicited by recombinant bacille Calmette-Guerin vaccines expressing pneumococcal surface protein A. J Exp Med 180: 2277–2286PubMedGoogle Scholar
  143. 143.
    Ho PS, Kwang J, Lee YK (2005) Intragastric administration of Lactobacillus casei expressing transmissible gastroentritis coronavirus spike glycoprotein induced specific antibody production. Vaccine 23: 1335–1342PubMedGoogle Scholar
  144. 144.
    Turner MS, Giffard PM (1999) Expression of Chlamydia psittaci-and human immunodeficiency virus-derived antigens on the cell surface of Lactobacillus fermentum BR11 as fusions to bspA. Infect Immun 67: 5486–5489PubMedGoogle Scholar
  145. 145.
    Bender BS, Rowe CA, Taylor SF, Wyatt LS, Moss B, Small PA, Jr (1996) Oral immunization with a replication-deficient recombinant vaccinia virus protects mice against influenza. J Virol 70: 6418–6424PubMedGoogle Scholar
  146. 146.
    Czub M, Weingartl H, Czub S, He R, Cao J (2005) Evaluation of modified vaccinia virus Ankara based recombinant SARS vaccine in ferrets. Vaccine 23: 2273–2279PubMedGoogle Scholar
  147. 147.
    Eko FO, Witte A, Huter V, Kuen B, Furst-Ladani S, Haslberger A, Katinger A, Hensel A, Szostak MP, Resch S et al (1999) New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine 17: 1643–1649PubMedGoogle Scholar
  148. 148.
    Haidinger W, Szostak MP, Jechlinger W, Lubitz W (2003) Online monitoring of Escherichia coli ghost production. Appl Environ Microbiol 69: 468–474PubMedGoogle Scholar
  149. 149.
    Lubitz W, Witte A, Eko FO, Kamal M, Jechlinger W, Brand E, Marchart J, Haidinger W, Huter V, Felnerova D et al (1999) Extended recombinant bacterial ghost system. J Biotechnol 73: 261–273PubMedGoogle Scholar
  150. 150.
    Lubitz W (2001) Bacterial ghosts as carrier and targeting systems. Expert Opin Biol Ther 1: 765–771PubMedGoogle Scholar
  151. 151.
    Szostak MP, Mader H, Truppe M, Kamal M, Eko FO, Huter V, Marchart J, Jechlinger W, Haidinger W, Brand E et al (1997) Bacterial ghosts as multifunctional vaccine particles. Behring Inst Mitt 98: 191–196PubMedGoogle Scholar
  152. 152.
    Witte A, Wanner G, Sulzner M, Lubitz W (1992) Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch Microbiol 157: 381–388PubMedGoogle Scholar
  153. 153.
    Matzinger P (2002) The danger model: a renewed sense of self. Science 296: 301–305PubMedGoogle Scholar
  154. 154.
    Mader HJ, Szostak MP, Hensel A, Lubitz W, Haslberger AG (1997) Endotoxicity does not limit the use of bacterial ghosts as candidate vaccines. Vaccine 15: 195–202PubMedGoogle Scholar
  155. 155.
    Igietseme J, Eko F, He Q, Bandea C, Lubitz W, Garcia-Sastre A, Black C (2005) Delivery of Chlamydia vaccines. Expert Opin Drug Deliv 2: 549–562PubMedGoogle Scholar
  156. 156.
    Garcea RL, Gissmann L (2004) Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr Opin Biotechnol 15: 513–517PubMedGoogle Scholar
  157. 157.
    Guerrero RA, Ball JM, Krater SS, Pacheco SE, Clements JD, Estes MK (2001) Recombinant Norwalk virus-like particles administered intranasally to mice induce systemic and mucosal (fecal and vaginal) immune responses. J Virol 75: 9713–9722PubMedGoogle Scholar
  158. 158.
    Niikura M, Takamura S, Kim G, Kawai S, Saijo M, Morikawa S, Kurane I, Li TC, Takeda N, Yasutomi Y (2002) Chimeric recombinant hepatitis E virus-like particles as an oral vaccine vehicle presenting foreign epitopes. Virology 293: 273–280PubMedGoogle Scholar
  159. 159.
    Shi W, Liu J, Huang Y, Qiao L (2001) Papillomavirus pseudovirus: a novel vaccine to induce mucosal and systemic cytotoxic T-lymphocyte responses. J Virol 75: 10139–10148PubMedGoogle Scholar
  160. 160.
    Arkema A, Huckriede A, Schoen P, Wilschut J, Daemen T (2000) Induction of cytotoxic T lymphocyte activity by fusion-active peptide-containing virosomes. Vaccine 18: 1327–1333PubMedGoogle Scholar
  161. 161.
    Bungener L, Huckriede A, Wilschut J, Daemen T (2002) Delivery of protein antigens to the immune system by fusion-active virosomes: a comparison with liposomes and ISCOMs. Biosci Rep 22: 323–338PubMedGoogle Scholar
  162. 162.
    Bungener L, Idema J, ter Veer W, Huckriede A, Daemen T, Wilschut J (2002) Virosomes in vaccine development: induction of cytotoxic T lymphocyte activity with virosome-encapsulated protein antigens. J Liposome Res 12: 155–163PubMedGoogle Scholar
  163. 163.
    Plant A, Williams NA (2004) Modulation of the immune response by the cholera-like enterotoxins. Curr Top Med Chem 4: 509–519PubMedGoogle Scholar
  164. 164.
    Holmgren J, Adamsson J, Anjuere F, Clemens J, Czerkinsky C, Eriksson K, Flach CF, George-Chandy A, Harandi AM, Lebens M et al (2005) Mucosal adjuvants and anti-infection and anti-immunopathology vaccines based on cholera toxin, cholera toxin B subunit and CpG DNA. Immunol Lett 97: 181–188PubMedGoogle Scholar
  165. 165.
    Rharbaoui FG, CA (2005) New generation of immune modulators based on Toll-like receptors signaling. Curr Immunol Reviews 1: 107–118Google Scholar
  166. 166.
    Pizza M, Giuliani MM, Fontana MR, Monaci E, Douce G, Dougan G, Mills KH, Rappuoli R, Del Giudice G (2001) Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19: 2534–2541PubMedGoogle Scholar
  167. 167.
    Sanchez J, Wallerstrom G, Fredriksson M, Angstrom J, Holmgren J (2002) Detoxification of cholera toxin without removal of its immunoadjuvanticity by the addition of (STa-related) peptides to the catalytic subunit. A potential new strategy to generate immunostimulants for vaccination. J Biol Chem 277: 33369–33377PubMedGoogle Scholar
  168. 168.
    Lu X, Clements JD, Katz JM (2002) Mutant Escherichia coli heat-labile enterotoxin [LT(R192G)] enhances protective humoral and cellular immune responses to orally administered inactivated influenza vaccine. Vaccine 20: 1019–1029PubMedGoogle Scholar
  169. 169.
    van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR (2000) Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J Immunol 165: 4778–4782PubMedGoogle Scholar
  170. 170.
    Gockel CM, Russell MW (2005) Induction and recall of immune memory by mucosal immunization with a non-toxic recombinant enterotoxin-based chimeric protein. Immunology 116: 477–486PubMedGoogle Scholar
  171. 171.
    Areas AP, Oliveira ML, Miyaji EN, Leite LC, Aires KA, Dias WO, Ho PL (2004) Expression and characterization of cholera toxin B-pneumococcal surface adhesin A fusion protein in Escherichia coli: ability of CTB-PsaA to induce humoral immune response in mice. Biochem Biophys Res Commun 321: 192–196PubMedGoogle Scholar
  172. 172.
    Sabirov A, Kodama S, Hirano T, Suzuki M, Mogi G (2001) Intranasal immunization enhances clearance of nontypeable Haemophilus influenzae and reduces stimulation of tumor necrosis factor alpha production in the murine model of otitis media. Infect Immun 69: 2964–2971PubMedGoogle Scholar
  173. 173.
    Medina E, Talay SR, Chhatwal GS, Guzman CA (1998) Fibronectin-binding protein I of Streptococcus pyogenes is a promising adjuvant for antigens delivered by mucosal route. Eur J Immunol 28: 1069–1077PubMedGoogle Scholar
  174. 174.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216PubMedGoogle Scholar
  175. 175.
    Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, Hood LE, Aderem A (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102: 9577–9582PubMedGoogle Scholar
  176. 176.
    Chuang TH, Lee J, Kline L, Mathison JC, Ulevitch RJ (2002) Toll-like receptor 9 mediates CpG-DNA signaling. J Leukoc Biol 71: 538–544PubMedGoogle Scholar
  177. 177.
    Wagner H (2004) The immunobiology of the TLR9 subfamily. Trends Immunol 25: 381–386PubMedGoogle Scholar
  178. 178.
    Lee CJ, Lee LH, Gu XX (2005) Mucosal immunity induced by pneumococcal glycoconjugate. Crit Rev Microbiol 31: 137–144PubMedGoogle Scholar
  179. 179.
    Cooper CL, Davis HL, Morris ML, Efler SM, Krieg AM, Li Y, Laframboise C, Al Adhami MJ, Khaliq Y, Seguin I et al (2004) Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine 22: 3136–3143PubMedGoogle Scholar
  180. 180.
    von Hunolstein C, Mariotti S, Teloni R, Alfarone G, Romagnoli G, Orefici G, Nisini R (2001) The adjuvant effect of synthetic oligodeoxynucleotide containing CpG motif converts the anti-Haemophilus influenzae type b glycoconju gates into efficient anti-polysaccharide and anti-carrier polyvalent vaccines. Vaccine 19: 3058–3066Google Scholar
  181. 181.
    Deiters U, Muhlradt PF (1999) Mycoplasmal lipopeptide MALP-2 induces the chemoattractant proteins macrophage inflammatory protein 1alpha (MIP-1alpha), monocyte chemoattractant protein 1, and MIP-2 and promotes leukocyte infiltration in mice. Infect Immun 67: 3390–3398PubMedGoogle Scholar
  182. 182.
    Muhlradt PF, Kiess M, Meyer H, Sussmuth R, Jung G (1997) Isolation, structure elucidation, and synthesis of a macrophage stimulatory lipopeptide from Mycoplasma fermentans acting at picomolar concentration. J Exp Med 185: 1951–1958PubMedGoogle Scholar
  183. 183.
    Deiters U, Gumenscheimer M, Galanos C, Muhlradt PF (2003) Toll-like receptor 2-and 6-mediated stimulation by macrophage-activating lipopeptide 2 induces lipopolysaccharide (LPS) cross tolerance in mice, which results in protection from tumor necrosis factor alpha but in only partial protection from lethal LPS doses. Infect Immun 71: 4456–4462PubMedGoogle Scholar
  184. 184.
    Into T, Kiura K, Yasuda M, Kataoka H, Inoue N, Hasebe A, Takeda K, Akira S, Shibata K (2004) Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell Microbiol 6: 187–199PubMedGoogle Scholar
  185. 185.
    Link C, Gavioli R, Ebensen T, Canella A, Reinhard E, Guzman CA (2004) The Toll-like receptor ligand MALP-2 stimulates dendritic cell maturation and modulates proteasome composition and activity. Eur J Immunol 34: 899–907PubMedGoogle Scholar
  186. 186.
    Rharbaoui F, Drabner B, Borsutzky S, Winckler U, Morr M, Ensoli B, Muhlradt PF, Guzman CA (2002) The Mycoplasma-derived lipopeptide MALP-2 is a potent mucosal adjuvant. Eur J Immunol 32: 2857–2865PubMedGoogle Scholar
  187. 187.
    Gurunathan S, Klinman DM, Seder RA (2000) DNA vaccines: immunology, application, and optimization*. Annu Rev Immunol 18: 927–974PubMedGoogle Scholar
  188. 188.
    Ebensen T, Paukner S, Link C, Kudela P, de Domenico C, Lubitz W, Guzman CA (2004) Bacterial ghosts are an efficient delivery system for DNA vaccines. J Immunol 172: 6858–6865PubMedGoogle Scholar
  189. 189.
    Liu WJ, Zhao KN, Gao FG, Leggatt GR, Fernando GJ, Frazer IH (2001) Polynucleotide viral vaccines: codon optimisation and ubiquitin conjugation enhances prophylactic and therapeutic efficacy. Vaccine 20: 862–869PubMedGoogle Scholar
  190. 190.
    Donnelly JJ, Friedman A, Martinez D, Montgomery DL, Shiver JW, Motzel SL, Ulmer JB, Liu MA (1995) Preclinical efficacy of a prototype DNA vaccine: enhanced protection against antigenic drift in influenza virus. Nat Med 1: 583–587PubMedGoogle Scholar
  191. 191.
    Prince AM, Whalen R, Brotman B (1997) Successful nucleic acid based immunization of newborn chimpanzees against hepatitis B virus. Vaccine 15: 916–919PubMedGoogle Scholar
  192. 192.
    Reddy ST, Ertl HC (1999) The potential use of DNA vaccines for neonatal immunization. Curr Opin Mol Ther 1: 22–29PubMedGoogle Scholar
  193. 193.
    Ozaki T, Yauchi M, Xin KQ, Hirahara F, Okuda K (2005) Cross-reactive protection against influenza A virus by a topically applied DNA vaccine encoding M gene with adjuvant. Viral Immunol 18: 373–380PubMedGoogle Scholar
  194. 194.
    Miyaji EN, Dias WO, Tanizaki MM, Leite LC (2003) Protective efficacy of PspA (pneumococcal surface protein A)-based DNA vaccines: contribution of both humoral and cellular immune responses. FEMS Immunol Med Microbiol 37: 53–57PubMedGoogle Scholar
  195. 195.
    Ochsenbein AF, Pinschewer DD, Sierro S, Horvath E, Hengartner H, Zinkernagel RM (2000) Protective long-term antibody memory by antigendriven and T help-dependent differentiation of long-lived memory B cells to short-lived plasma cells independent of secondary lymphoid organs. Proc Natl Acad Sci USA 97: 13263–13268PubMedGoogle Scholar
  196. 196.
    Zinkernagel RM (2002) On differences between immunity and immunological memory. Curr Opin Immunol 14: 523–536PubMedGoogle Scholar
  197. 197.
    Pinschewer DD, Perez M, Jeetendra E, Bachi T, Horvath E, Hengartner H, Whitt MA, de la Torre JC, Zinkernagel RM (2004) Kinetics of protective antibodies are determined by the viral surface antigen. J Clin Invest 114: 988–993PubMedGoogle Scholar
  198. 198.
    Nicol M, Huebner R, Mothupi R, Kayhty H, Mbelle N, Khomo E (2002) Haemophilus influenzae type b conjugate vaccine diluted tenfold in diphtheriatetanus-whole cell pertussis vaccine: a randomized trial. Pediatr Infect Dis J 21: 138–141PubMedGoogle Scholar
  199. 199.
    Cassidy WM, Watson B, Ioli VA, Williams K, Bird S, West DJ (2001) A randomized trial of alternative two-and three-dose hepatitis B vaccination regimens in adolescents: antibody responses, safety, and immunologic memory. Pediatrics 107: 626–631PubMedGoogle Scholar
  200. 200.
    Ahman H, Kayhty H, Vuorela A, Leroy O, Eskola J (1999) Dose dependency of antibody response in infants and children to pneumococcal polysaccharides conjugated to tetanus toxoid. Vaccine 17: 2726–2732PubMedGoogle Scholar
  201. 201.
    Bosnak M, Dikici B, Bosnak V, Haspolat K (2002) Accelerated hepatitis B vaccination schedule in childhood. Pediatr Int 44: 663–665PubMedGoogle Scholar
  202. 202.
    Goldblatt D, Miller E, McCloskey N, Cartwright K (1998) Immunological response to conjugate vaccines in infants: follow up study. BMJ 316: 1570–1571PubMedGoogle Scholar
  203. 203.
    Siegrist CA (2001) Neonatal and early life vaccinology. Vaccine 19: 3331–3346PubMedGoogle Scholar
  204. 204.
    Pihlgren M, Tougne C, Bozzotti P, Fulurija A, Duchosal MA, Lambert PH, Siegrist CA (2003) Unresponsiveness to lymphoid-mediated signals at the neonatal follicular dendritic cell precursor level contributes to delayed germinal center induction and limitations of neonatal antibody responses to T-dependent antigens. J Immunol 170: 2824–2832PubMedGoogle Scholar
  205. 205.
    Pihlgren M, Schallert N, Tougne C, Bozzotti P, Kovarik J, Fulurija A, Kosco-Vilbois M, Lambert PH, Siegrist CA (2001) Delayed and deficient establishment of the long-term bone marrow plasma cell pool during early life. Eur J Immunol 31: 939–946PubMedGoogle Scholar
  206. 206.
    Ota MO, Vekemans J, Schlegel-Haueter SE, Fielding K, Sanneh M, Kidd M, Newport MJ, Aaby P, Whittle H, Lambert PH et al (2002) Influence of Mycobacterium bovis bacillus Calmette-Guerin on antibody and cytokine responses to human neonatal vaccination. J Immunol 168: 919–925PubMedGoogle Scholar
  207. 207.
    Van de Perre P (2003) Transfer of antibody via mother’s milk. Vaccine 21: 3374–3376PubMedGoogle Scholar
  208. 208.
    Quiambao BP, Nohynek H, Kayhty H, Ollgren J, Gozum L, Gepanayao CP, Soriano V, Makela PH (2003) Maternal immunization with pneumococcal polysaccharide vaccine in the Philippines. Vaccine 21: 3451–3454PubMedGoogle Scholar
  209. 209.
    Daly KA, Toth JA, Giebink GS (2003) Pneumococcal conjugate vaccines as maternal and infant immunogens: challenges of maternal recruitment. Vaccine 21: 3473–3478PubMedGoogle Scholar
  210. 210.
    Shapiro ED, Berg AT, Austrian R, Schroeder D, Parcells V, Margolis A, Adair RK, Clemens JD (1991) The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med 325: 1453–1460PubMedGoogle Scholar
  211. 211.
    Bjorkholm B, Hagberg L, Sundbeck G, Granstrom M (2000) Booster effect of low doses of tetanus toxoid in elderly vaccinees. Eur J Clin Microbiol Infect Dis 19: 195–199PubMedGoogle Scholar
  212. 212.
    Powers DC, Belshe RB (1994) Vaccine-induced antibodies to heterologous influenza A H1N1 viruses: effects of aging and “original antigenic sin”. J Infect Dis 169: 1125–1129PubMedGoogle Scholar
  213. 213.
    Smith DJ, Forrest S, Ackley DH, Perelson AS (1999) Variable efficacy of repeated annual influenza vaccination. Proc Natl Acad Sci USA 96: 14001–14006PubMedGoogle Scholar
  214. 214.
    Voordouw AC, Sturkenboom MC, Dieleman JP, Stijnen T, Smith DJ, van der Lei J, Stricker BH (2004) Annual revaccination against influenza and mortality risk in community-dwelling elderly persons. Jama 292: 2089–2095PubMedGoogle Scholar
  215. 215.
    Rammensee HG (2003) Immunoinformatics: bioinformatic strategies for better understanding of immune function. Introduction. Novartis Found Symp 254: 1–2PubMedGoogle Scholar
  216. 216.
    Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50: 213–219PubMedGoogle Scholar
  217. 217.
    Nussbaum AK, Kuttler C, Hadeler KP, Rammensee HG, Schild H (2001) PAProC: a prediction algorithm for proteasomal cleavages available on the WWW. Immunogenetics 53: 87–94PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Pablo D. Becker
    • 1
  • Carlos A. Guzmán
    • 1
  1. 1.Department of VaccinologyHelmholtz Centre for Infection ResearchBraunschweigGermany

Personalised recommendations