Advertisement

Poxviruses pp 47-64 | Cite as

Genus Orthopoxvirus: Variola virus

  • Inger K. Damon
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)

Abstract

Variola major virus caused the human disease smallpox; interpretations of the historic record indicate that the initial introduction of disease in a naïve population had profound effects on its demographics. Smallpox was declared eradicated by the World Health Organization (WHO) in 1980. This chapter reviews epidemiological, clinical and pathophysiological observations of disease, and review some of the more recent observations on the microbiology of Variola virus

Keywords

Vaccinia Virus Case Fatality Rate Variola Virus Bull World Health Organ Cowpox Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Esposito JJ, Sammons SA, Frace AM, Osborne JD, Olsen-Rasmussen M, Zhang M, Govil D, Damon IK, Kline R, Laker M et al (2006) Genome sequence diversity and clues to the evolution of Variola virus.Science 313: 807–812PubMedCrossRefGoogle Scholar
  2. 2.
    Gubser C, Smith GL (2002) The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol 83: 855–872PubMedGoogle Scholar
  3. 3.
    Dixon CW (1962) Smallpox. J.& A. Churchill, LondonGoogle Scholar
  4. 4.
    Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID (1988) Smallpox and its Eradication. World Health Organization, GenevaGoogle Scholar
  5. 5.
    Henderson DA, Moss B (1999) Smallpox and Vaccinia. In: S Plotkin, W Orenstein (eds): Vaccines. Saunders, New York, 74–97Google Scholar
  6. 6.
    Creighton C (1894) History of Epidemics in Britain. Cambridge University Press, LondonGoogle Scholar
  7. 7.
    Jenner E (1798) An enquiry into the causes and effects of variolae vaccinae, a disease discovered in some of the western couties of England, particularly Gloucerstershire, and known by the name of cowpox. Samson Low, LondonGoogle Scholar
  8. 8.
    Jenner E (1799) Further observations on the variolae vaccinae. Samson Low, LondonGoogle Scholar
  9. 9.
    Franco-Paredes C, Lammoglia L, Santos-Preciado JI (2005) The Spanish royal philanthropic expedition to bring smallpox vaccination to the New World and Asia in the 19th century. Clin Infect Dis 41: 1285–1289PubMedCrossRefGoogle Scholar
  10. 10.
    Baxby D (1999) The orgins of vaccinia virus-an even shorter rejoinder. Soc Hist Med 12: 139PubMedCrossRefGoogle Scholar
  11. 11.
    Baxby D (1999) Edward Jenner’s Inquiry; a bicentenary analysis. Vaccine 17: 301–307PubMedCrossRefGoogle Scholar
  12. 12.
    Collier LH (1954) The preservation of vaccinia virus. Bacteriol Rev 18: 74–86PubMedGoogle Scholar
  13. 13.
    National Research Council (1999) Assessment of Future Needs for Live Variola Virus. NAS Press, Washington, D.C.Google Scholar
  14. 14.
    Leduc JW, Damon I, Relman DA, Huggins J, Jahrling PB (2002) Smallpox research activities: U.S. interagency collaboration, 2001. Emerg Infect Dis 8: 743–745PubMedGoogle Scholar
  15. 15.
    Leduc JW, Jahrling PB (2001) Strengthening national preparedness for smallpox: an update. Emerg Infect Dis 7: 155–157PubMedCrossRefGoogle Scholar
  16. 16.
    Noble J Jr, Rich JA (1969) Transmission of smallpox by contact and by aerosol routes in Macaca irus. Bull World Health Organ 40: 279–286PubMedGoogle Scholar
  17. 17.
    Kalter SS, Rodriguez AR, Cummins LB, Heberling RL, Foster SO (1979) Experimental smallpox in chimpanzees. Bull World Health Organ 57: 637–641PubMedGoogle Scholar
  18. 18.
    Heberling RL, Kalter SS, Rodriguez AR (1976) Poxvirus infection of the baboon (Papio cynocephalus). Bull World Health Organ 54: 285–294PubMedGoogle Scholar
  19. 19.
    Downie AW, Meiklejohn M, St Vincent L, Rao AR, Sundara Babu BV, Kempe CH (1965) The recovery of smallpox virus from patients and their environment in a smallpox hospital. Bull World Health Organ 33: 615–622PubMedGoogle Scholar
  20. 20.
    Mack TM, Thomas DB, Muzaffar KM (1972) Epidemiology of smallpox in West Pakistan. II Determinants of intravillage spread other than acquired immunity. Am J Epidemiol 95: 169–177PubMedGoogle Scholar
  21. 21.
    Mack TM, Thomas DB, Ali A, Muzaffar KM (1972) Epidemiology of smallpox in West Pakistan. I.Acquired immunity and the distribution of disease. Am J Epidemiol95: 157–168Google Scholar
  22. 22.
    Heiner GG, Fatima N, McCrumb FR Jr (1971) A study of intrafamilial transmission of smallpox. Am J Epidemiol 94: 316–326PubMedGoogle Scholar
  23. 23.
    Rao AR, Jacob ES, Kamalakshi S, Appaswamy S, Bradbury (1968) Epidemiological studies in smallpox. A study of intrafamilial transmission in a series of 254 infected families. Indian J Med Res 56: 1826–1854PubMedGoogle Scholar
  24. 24.
    Mack TM (1972) Smallpox in Europe, 1950-1971. J Infect Dis 125: 161–169PubMedGoogle Scholar
  25. 25.
    Wehrle PF, Posch J, Richter KH, Henderson DA (1970) An airborne outbreak of smallpox in a German hospital and its significance with respect to other recent outbreaks in Europe. Bull World Health Organ 43: 669–679PubMedGoogle Scholar
  26. 26.
    Stallybrass CO (1931) The principles of epidemiology and the process of infection. Routledge, London, 329Google Scholar
  27. 27.
    Thomas DB, McCormack WM, Arita I, Khan MM, Islam S, Mack TM (1971) Endemic smallpox in rural East Pakistan. I.Methodology, clinical and epide miologic characteristics of cases, and intervillage transmission. Am J Epidemiol 93: 361–372Google Scholar
  28. 28.
    Arita I, Wickett JF, Fenner F (1986) Impact of population density on immunization programs. J Hyg Camb 96: 459–466PubMedGoogle Scholar
  29. 29.
    Duncan SR, Scott S, Duncan CJ (1993) An hypothesis for the periodicity of smallpox epidemics as revealed by time series analysis. J Theor Biol 160: 231–248PubMedCrossRefGoogle Scholar
  30. 30.
    Rao AR (1972) Smallpox. The Kothari Book Depot, BombayGoogle Scholar
  31. 31.
    Rao AR, Prahlad I, Swaminathan M, Lakshmi A (1963) Pregnancy and smallpox. J Indian Med Assoc 40: 353–363PubMedGoogle Scholar
  32. 32.
    Harper GJ (1961) Airborne micro-organisms: survival tests with four viruses. J Hyg (Lond) 59: 479–486Google Scholar
  33. 33.
    Kitamura T, Aoyama Y, Kurata T, Arita M, Imagawa Y (1977) Virological studies of smallpox in an endemic area. II. Virus content of clinical specimens and typing of virus isolates. Jpn J Med Sci Biol 30: 229–239PubMedGoogle Scholar
  34. 34.
    Sarkar JK, Mitra AC, Mukherjee MK, De SK, Mazumdar DG (1973) Virus excretion in smallpox. 1._Excretion in the throat, urine, and conjunctiva of patients. Bull World Health Organ 48: 517–522Google Scholar
  35. 35.
    Downie AW, St Vincent L, Meiklejohn G, Ratnakannan NR, Rao AR, Krishnan GN, Kempe CH (1961) Studies on the virus content of mouth washings in the acute phase of smallpox. Bull World Health Organ 25: 49–53PubMedGoogle Scholar
  36. 36.
    Downie AW, Fedson DS, Saint VL, Rao AR, Kempe CH (1969) Haemorrhagic smallpox. J Hyg (Lond) 67: 619–629Google Scholar
  37. 37.
    Sarkar JK, Mitra AC, Chakravarty MS (1972) Relationship of clinical severity, antibody level, and previous vaccination state in smallpox. Trans R Soc Trop Med Hyg 66: 789–792PubMedCrossRefGoogle Scholar
  38. 38.
    Rao AR (1964) Haemorrhagic smallpox: a study of 240 cases. J Indian Med Assoc 43: 224–229PubMedGoogle Scholar
  39. 39.
    Rao AR, Sukumar MS, Kamalakshi S, Paramasivam TV, Parasuraman TA, Shantha M (1968) Experimental variola in monkeys. I.Studies on disease enhancing property of cortisone in smallpox. A preliminary report. Indian J Med Res 56: 1855–1865Google Scholar
  40. 40.
    Downie AW, McCarthy K, Macdonald A, Maccallum FO, Macrae AE (1953) Virus and virus antigen in the blood of smallpox patients; their significance in early diagnosis and prognosis. Lancet 265: 164–166PubMedCrossRefGoogle Scholar
  41. 41.
    Downie AW, McCarthy K, Macdonald A (1950) Viraemia in smallpox. Lancet 2: 513–514PubMedCrossRefGoogle Scholar
  42. 42.
    Downie AW, Fedson DS, Saint VL, Rao AR, Kempe CH (1969) Haemorrhagic smallpox. J Hyg (Lond) 67: 619–629Google Scholar
  43. 43.
    Jahrling PB, Hensley LE, Martinez MJ, Leduc JW, Rubins KH, Relman DA, Huggins JW (2004) Exploring the potential of variola virus infection of cynomolgus macaques as a model for human smallpox. Proc Natl Acad Sci USA 101: 15196–15200PubMedCrossRefGoogle Scholar
  44. 44.
    Rubins KH, Hensley LE, Jahrling PB, Whitney AR, Geisbert TW, Huggins JW, Owen A, Leduc JW, Brown PO, Relman DA (2004) The host response to smallpox: analysis of the gene expression program in peripheral blood cells in a nonhuman primate model. Proc Natl Acad Sci USA 101: 15190–15195PubMedCrossRefGoogle Scholar
  45. 45.
    Bras G (1952) The morbid anatomy of smallpox. Doc Med Geogr Trop 4: 303PubMedGoogle Scholar
  46. 46.
    Marennikova S, Maltseva MN, Korneeva VI, Garanina NM (1977) Pox outbreak among carnivora (Felidae) and Endentata. J Infect Dis 135: 358PubMedGoogle Scholar
  47. 47.
    Greene HSN (1934) Rabbitpox. II. Pathology of the epidemic disease. J Exp Med 60: 427Google Scholar
  48. 48.
    Smith GL (1993) Vaccinia virus glycoproteins and immune evasion. The sixteenth Fleming Lecture. J Gen Virol 74: 1725–1740PubMedCrossRefGoogle Scholar
  49. 49.
    Shchelkunov SN (1995) Functional organization of variola major and vaccinia virus genomes. Virus Genes 10: 53–71PubMedCrossRefGoogle Scholar
  50. 50.
    Massung RF, Esposito JJ, Liu LI, Qi J, Utterback TR, Knight JC, Aubin L, Yuran TE, Parsons JM, Loparev VN et al (1993) Potential virulence determinants in terminal regions of variola smallpox virus genome. Nature 366: 748–751PubMedCrossRefGoogle Scholar
  51. 51.
    Senkevich TG, Koonin EV, Buller RM (1994) A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. Virology 198: 118–128PubMedCrossRefGoogle Scholar
  52. 52.
    Shchelkunov SN, Resenchuk SM, Totmenin AV, Blinov VM, Marennikova SS, Sandakhchiev LS (1993) Comparison of the genetic maps of variola and vaccinia viruses. FEBS Lett 327: 321–324PubMedCrossRefGoogle Scholar
  53. 53.
    Alcami A, Smith GL (1993) Comment on the paper by Shchelkunov et al (1993) FEBS Letters 319, 80–83. Two genes encoding poxvirus cytokine receptors are disrupted or deleted in variola virus. FEBS Lett 335: 136–137CrossRefGoogle Scholar
  54. 54.
    Buller RM, Palumbo GJ (1991) Poxvirus pathogenesis. Microbiol Rev 55: 80–122PubMedGoogle Scholar
  55. 55.
    Chen N, Li G, Liszewski MK, Atkinson JP, Jahrling PB, Feng Z, Schriewer J, Buck C, Wang C, Lefkowitz EJ et al (2005) Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 340: 46–63PubMedCrossRefGoogle Scholar
  56. 56.
    McFadden G (2005) Poxvirus tropism. Nat Rev Microbiol 3: 201–213PubMedCrossRefGoogle Scholar
  57. 57.
    Jahrling PB, Fritz EA, Hensley LE (2005) Countermeasures to the bioterrorist threat of smallpox. Curr Mol Med 5: 817–826PubMedCrossRefGoogle Scholar
  58. 58.
    Massung RF, Loparev VN, Knight JC, Totmenin AV, Chizhikov VE, Parsons JM, Safronov PF, Gutorov VV, Shchelkunov SN, Esposito JJ (1996) Terminal region sequence variations in variola virus DNA. Virology 221: 291–300PubMedCrossRefGoogle Scholar
  59. 59.
    Dunlop LR, Oehlberg KA, Reid JJ, Avci D, Rosengard AM (2003) Variola virus immune evasion proteins. Microbes Infect 5: 1049–1056PubMedCrossRefGoogle Scholar
  60. 60.
    Esteban DJ, Buller RM (2005) Ectromelia virus: the causative agent of mousepox. J Gen Virol 86: 2645–2659PubMedCrossRefGoogle Scholar
  61. 61.
    Barry M, McFadden G (1997) Virus encoded cytokines and cytokine receptors. Parasitology 115 Suppl: S89–100CrossRefGoogle Scholar
  62. 62.
    Cao JX, McFadden G (2001) Characterization of the myxoma virus M118L protein: a novel essential poxvirus IMV-associated protein. Virus Genes 23: 303–313PubMedCrossRefGoogle Scholar
  63. 63.
    Everett H, McFadden G (2002) Poxviruses and apoptosis: a time to die. Curr Opin Microbiol 5: 395–402PubMedCrossRefGoogle Scholar
  64. 64.
    Johnston JB, McFadden G (2004) Technical knockout: understanding poxvirus pathogenesis by selectively deleting viral immunomodulatory genes. Cell Microbiol 6: 695–705PubMedCrossRefGoogle Scholar
  65. 65.
    Johnston JB, McFadden G (2003) Poxvirus immunomodulatory strategies: current perspectives. J Virol 77: 6093–6100PubMedCrossRefGoogle Scholar
  66. 66.
    Lalani AS, Masters J, Zeng W, Barrett J, Pannu R, Everett H, Arendt CW, McFadden G (1999) Use of chemokine receptors by poxviruses. Science 286: 1968–1971PubMedCrossRefGoogle Scholar
  67. 67.
    Smith CA, Smith TD, Smolak PJ, Friend D, Hagen H, Gerhart M, Park L, Pickup DJ, Torrance D, Mohler K et al (1997) Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits beta chemokine activity yet lacks sequence homology to known chemokine receptors. Virology 236: 316–327PubMedCrossRefGoogle Scholar
  68. 68.
    Rosengard AM, Liu Y, Nie Z, Jimenez R (2002) Variola virus immune evasion design: expression of a highly efficient inhibitor of human complement. Proc Natl Acad Sci USA 99: 8808–8813PubMedGoogle Scholar
  69. 69.
    Rosengard AM, Alonso LC, Korb LC, Baldwin WM III, Sanfilippo F, Turka LA, Ahearn JM (1999) Functional characterization of soluble and membrane-bound forms of vaccinia virus complement control protein (VCP). Mol Immunol 36: 685–697PubMedCrossRefGoogle Scholar
  70. 70.
    Isaacs SN, Kotwal GJ, Moss B (1992) Vaccinia virus complement-control protein prevents antibody-dependent complement-enhanced neutralization of infectivity and contributes to virulence. Proc Natl Acad Sci USA 89: 628–632PubMedCrossRefGoogle Scholar
  71. 71.
    Kotwal GJ, Isaacs SN, McKenzie R, Frank MM, Moss B (1990) Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science 250: 827–830PubMedCrossRefGoogle Scholar
  72. 72.
    Sfyroera G, Katragadda M, Morikis D, Isaacs SN, Lambris JD (2005) Electrostatic modeling predicts the activities of orthopoxvirus complement control proteins. J Immunol 174: 2143–2151PubMedGoogle Scholar
  73. 73.
    Buller RM, Chakrabarti S, Moss B, Fredrickson T (1988) Cell proliferative response to vaccinia virus is mediated by VGF. Virology 164: 182–192PubMedCrossRefGoogle Scholar
  74. 74.
    Buller RM, Chakrabarti S, Cooper JA, Twardzik DR, Moss B (1988) Deletion of the vaccinia virus growth factor gene reduces virus virulence. J Virol 62: 866–874PubMedGoogle Scholar
  75. 75.
    Kim M, Yang H, Kim SK, Reche PA, Tirabassi RS, Hussey RE, Chishti Y, Rheinwald JG, Morehead TJ, Zech T et al (2004) Biochemical and functional analysis of smallpox growth factor (SPGF) and anti-SPGF monoclonal antibodies. J Biol Chem 279: 25838–25848PubMedCrossRefGoogle Scholar
  76. 76.
    Born TL, Morrison LA, Esteban DJ, VandenBos T, Thebeau LG, Chen N, Spriggs MK, Sims JE, Buller RM (2000) A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J Immunol 164: 3246–3254PubMedGoogle Scholar
  77. 77.
    Symons JA, Adams E, Tscharke DC, Reading PC, Waldmann H, Smith GL (2002) The vaccinia virus C12L protein inhibits mouse IL-18 and promotes virus virulence in the murine intranasal model. J Gen Virol 83: 2833–2844PubMedGoogle Scholar
  78. 78.
    Reading PC, Smith GL (2003) Vaccinia virus interleukin-18-binding protein promotes virulence by reducing gamma interferon production and natural killer and T-cell activity. J Virol 77: 9960–9968PubMedCrossRefGoogle Scholar
  79. 79.
    Esteban DJ, Nuara AA, Buller RM (2004) Interleukin-18_and glycosaminoglycan binding by a protein encoded by Variola virus. J Gen Virol 85: 1291–1299PubMedCrossRefGoogle Scholar
  80. 80.
    Alejo A, Ruiz-Arguello MB, Ho Y, Smith VP, Saraiva M, Alcami A (2006) A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc Natl Acad Sci USA 103: 5995–6000PubMedCrossRefGoogle Scholar
  81. 81.
    Huang J, Huang Q, Zhou X, Shen MM, Yen A, Yu SX, Dong G, Qu K, Huang P, Anderson EM et al (2004) The poxvirus p28 virulence factor is an E3 ubiquitin ligase. J Biol Chem 279: 54110–54116PubMedCrossRefGoogle Scholar
  82. 82.
    Senkevich TG, Wolffe EJ, Buller RM (1995) Ectromelia virus RING finger protein is localized in virus factories and is required for virus replication in macrophages. J Virol 69: 4103–4111PubMedGoogle Scholar
  83. 83.
    Brick DJ, Burke RD, Minkley AA, Upton C (2000) Ectromelia virus virulence factor p28 acts upstream of caspase-3 in response to UV light-induced apoptosis. J Gen Virol 81: 1087–1097PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Inger K. Damon
    • 1
  1. 1.Poxvirus Program, Division of Viral and Rickettsial DiseasesCenters for Disease Control and PreventionAtlantaUSA

Personalised recommendations