Skip to main content
Book cover

Poxviruses pp 329–353Cite as

Orthopoxvirus vaccines and vaccination

  • Chapter

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

Immunization procedures against Variola virus, from the historical perspective most often first credited to Edward Jenner in the late 18th century, helped finally to eradicate smallpox from the world. Since its eradication, the study of this disease and its pathology has been given little attention; however, with the emergence of Monkeypox virus into the human population and the potential use of smallpox as a bioterrorist weapon, the need for an option to vaccinate the world’s population is once again a reality. The vaccines used during the eradication program were live, attenuated Vaccinia virus preparations of varying virulence that caused a significant number of adverse reactions in naïve subjects. Currently, immunosuppressed individuals, persons with certain skin diseases, and people with cardiovascular complications are contraindicated against receiving this type of vaccine. A new vaccine is needed. Until now, the only known correlate of immunity to the smallpox vaccine conveying protection has been the development of a scar at the site of vaccination. Characterizing the protective immune response established upon vaccination with Dryvax®, at both the innate and adaptive levels, would greatly enhance our understanding of the human immune response to the vaccine, and thus generate information for the production and evaluation of new and safer third- and fourth-generation vaccines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyj ID (1988) Smallpox and its eradication. World Health Organization, Geneva

    Google Scholar 

  2. Coult R (1731) Operation of inoculation of the smallpox as performed in Bengal [from R. Coult to Dr Oliver Coult in An account of the diseases of Bengall (dated Calcutta, Feb 10. 1731]. Reprinted in: Dharampal (1971) Indian science and technology in the eighteenth century. Impex, Delhi, 141–143

    Google Scholar 

  3. Jenner E (1801) The origin of the vaccine inoculation. Shury, London

    Google Scholar 

  4. Crookshank EM (1889) History and pathology of vaccination, vols. 1 and 2. Lewis, London

    Google Scholar 

  5. Downie AW (1939) The immunological relationship of the virus of spontaneous cowpox to vaccinia virus. Br J Exp Pathol 20: 158–176

    Google Scholar 

  6. Ministry of Health for England and Wales (1924) Smallpox and vaccination. Reports on public health and medical subjects, No. 8. H.M. Stationery Office, London

    Google Scholar 

  7. Berger KAHW (1973) Decrease in postvaccinial deaths in Austria after introducing a less pathogenic virus strain. In: International Symposium on Smallpox Vaccine, Bilthoven, the Netherlands, 11–13 October 1972: Symposia Series in Immunobiological Standardization, vol. 19. Karger, Basel, 199–203

    Google Scholar 

  8. Polak MF (1973) Complications of smallpox vaccination in the Netherlands, 1959-1970. In: International Symposium on Smallpox Vaccine, Bilthoven, the Netherlands, 11–13 October 1972: Symposia Series in Immunobiological Standardization, vol. 19. Karger, Basel, 235–242

    Google Scholar 

  9. Marennikova SS (1973) Evaluation of vaccine strains by their behavior in vaccinated animals and possible implication of the revealed features for smallpox vaccination practice. In: International Symposium on Smallpox Vaccine, Bilthoven, the Netherlands, 11–13 October 1972: Symposia Series in Immunobiological Standardization, vol. 19. Karger, Basel, 253–260

    Google Scholar 

  10. Galasso GJ, Mattheis MJ, Cherry JD, Connor JD, McIntosh K, Benenson AS, Alling DW (1977) Clinical and serologic study of four smallpox vaccines comparing variations of dose and route of administration. J Infect Dis 135: 183–186

    PubMed  CAS  Google Scholar 

  11. Polak MF, Beunders BJ, Van Der Werff AR, Sanders EW, Van Klaveren J, Brans LM (1963) A comparative study of clinical reaction observed after application of several smallpox vaccines in primary vaccination of young adults. Bull World Health Organ 29: 311–322

    PubMed  CAS  Google Scholar 

  12. Poxvirus Bioinformatics Resource Center (2004) http://www.biovirus.org

    Google Scholar 

  13. Lane JM, Ruben FL, Neff JM, Millar JD (1969) Complications of smallpox vaccination, 1968. N Engl J Med 281: 1201–1208

    Article  PubMed  CAS  Google Scholar 

  14. Lane JM, Ruben FL, Neff JM, Millar JD (1970) Complications of smallpox vaccination, 1968: results of ten statewide surveys. J Infect Dis 122: 303–309

    PubMed  CAS  Google Scholar 

  15. Fulginiti VA, Papier A, Lane JM, Neff JM, Henderson DA (2003) Smallpox vaccination: a review, part II. Adverse events. Clin Infect Dis 37: 251–271

    Article  PubMed  Google Scholar 

  16. CDC (2006) Frequently asked questions about smallpox vaccine. http://www.bt.cdc.gov/agent/smallpox/vaccination/faq.asp

    Google Scholar 

  17. Cono J, Casey CG, Bell DM (2003) Smallpox vaccination and adverse reactions. Guidance for clinicians. MMWR Recomm Rep 52: 1–28

    Google Scholar 

  18. Hanna W, Baxby D (2002) Studies in smallpox and vaccination. 1913. Rev Med Virol 12: 201–209

    Article  PubMed  CAS  Google Scholar 

  19. Mack TM (1972) Smallpox in Europe, 1950–1971. J Infect Dis 125: 161–169

    PubMed  CAS  Google Scholar 

  20. Fearon DT, Locksley RM (1996) The instructive role of innate immunity in the acquired immune response. Science 272: 50–53

    Article  PubMed  CAS  Google Scholar 

  21. Pasare C, Medzhitov R (2004) Toll-like receptors: linking innate and adaptive immunity. Microbes Infect 6: 1382–1387

    Article  PubMed  CAS  Google Scholar 

  22. Alcami A, Khanna A, Paul NL, Smith GL (1999) Vaccinia virus strains Lister, USSR and Evans express soluble and cell-surface tumour necrosis factor receptors. J Gen Virol 80: 949–959

    PubMed  CAS  Google Scholar 

  23. Cunnion KM (1999) Tumor necrosis factor receptors encoded by poxviruses. Mol Genet Metab 67: 278–282

    Article  PubMed  CAS  Google Scholar 

  24. Karupiah G, Fredrickson TN, Holmes KL, Khairallah LH, Buller RM (1993) Importance of interferons in recovery from mousepox. J Virol 67: 4214–4226

    PubMed  CAS  Google Scholar 

  25. Smith GL, Symons JA, Alcami A (1998) Poxviruses: interfering with interferon. Semin Virol 8: 409–418

    Article  CAS  Google Scholar 

  26. Smith VP, Alcami A (2002) Inhibition of interferons by ectromelia virus. J Virol 76: 1124–1134

    PubMed  CAS  Google Scholar 

  27. Symons JA, Alcami A, Smith GL (1995) Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81: 551–560

    Article  PubMed  CAS  Google Scholar 

  28. Colamonici OR, Domanski P, Sweitzer SM, Larner A, Buller RM (1995) Vaccinia virus B18R gene encodes a type I interferon-binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem 270: 15974–15978

    Article  PubMed  CAS  Google Scholar 

  29. Alcami A, Smith GL (1992) A soluble receptor for interleukin-1 beta encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71: 153–167

    Article  PubMed  CAS  Google Scholar 

  30. Bowie A, Kiss-Toth E, Symons JA, Smith GL, Dower SK, O’Neill LA (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci USA 97: 10162–10167

    Article  PubMed  CAS  Google Scholar 

  31. Spriggs MK, Hruby DE, Maliszewski CR, Pickup DJ, Sims JE, Buller RM, VanSlyke J (1992) Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71: 145–152

    Article  PubMed  CAS  Google Scholar 

  32. Reading PC, Smith GL (2003) Vaccinia virus interleukin-18-binding protein promotes virulence by reducing gamma interferon production and natural killer and T-cell activity. J Virol 77: 9960–9968

    Article  PubMed  CAS  Google Scholar 

  33. Born TL, Morrison LA, Esteban DJ, VandenBos T, Thebeau LG, Chen N, Spriggs MK, Sims JE, Buller RM (2000) A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J Immunol 164: 3246–3254

    PubMed  CAS  Google Scholar 

  34. Graham KA, Lalani AS, Macen JL, Ness TL, Barry M, Liu LY, Lucas A, Clark-Lewis I, Moyer RW, McFadden G (1997) The T1/35kDa family of poxvirussecreted proteins bind chemokines and modulate leukocyte influx into virusinfected tissues. Virology 229: 12–24

    Article  PubMed  CAS  Google Scholar 

  35. Smith CA, Smith TD, Smolak PJ, Friend D, Hagen H, Gerhart M, Park L, Pickup DJ, Torrance D, Mohler K, Schooley K, Goodwin RG (1997) Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits beta chemokine activity yet lacks sequence homology to known chemokine receptors. Virology 236: 316–327

    Article  PubMed  CAS  Google Scholar 

  36. Howard J, Justus DE, Totmenin AV, Shchelkunov S, Kotwal GJ (1998) Molecular mimicry of the inflammation modulatory proteins (IMPs) of poxviruses: evasion of the inflammatory response to preserve viral habitat. J Leukoc Biol 64: 68–71

    PubMed  CAS  Google Scholar 

  37. Stack J, Haga IR, Schroder M, Bartlett NW, Maloney G, Reading PC, Fitzgerald KA, Smith GL, Bowie AG (2005) Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201: 1007–1018

    Article  PubMed  CAS  Google Scholar 

  38. Harte MT, Haga IR, Maloney G, Gray P, Reading PC, Bartlett NW, Smith GL, Bowie A, O’Neill LA (2003) The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 197: 343–351

    Article  PubMed  CAS  Google Scholar 

  39. Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian SH, Lucas A, McFadden G (2003) Poxviruses and immune evasion. Annu Rev Immunol 21: 377–423

    Article  PubMed  CAS  Google Scholar 

  40. Gherardi MM, Ramirez JC, Esteban M (2003) IL-12 and IL-18 act in synergy to clear vaccinia virus infection: involvement of innate and adaptive components of the immune system. J Gen Virol 84: 1961–1972

    Article  PubMed  CAS  Google Scholar 

  41. Tanaka-Kataoka M, Kunikata T, Takayama S, Iwaki K, Ohashi K, Ikeda M, Kurimoto M (1999) In vivo antiviral effect of interleukin 18 in a mouse model of vaccinia virus infection. Cytokine 11: 593–599

    Article  PubMed  CAS  Google Scholar 

  42. Chaudhri G, Panchanathan V, Buller RM, van den Eertwegh AJ, Claassen E, Zhou J, de Chazal R, Laman JD, Karupiah G (2004) Polarized type 1 cytokine response and cell-mediated immunity determine genetic resistance to mousepox. Proc Natl Acad Sci USA 101: 9057–9062

    Article  PubMed  CAS  Google Scholar 

  43. Ruby J, Bluethmann H, Peschon JJ (1997) Antiviral activity of tumor necrosis factor (TNF) is mediated via p55 and p75 TNF receptors. J Exp Med 186: 1591–1596

    Article  PubMed  CAS  Google Scholar 

  44. Jackson RJ, Ramsay AJ, Christensen CD, Beaton S, Hall DF, Ramshaw IA (2001) Expression of mouse interleukin-4_by a recombinant ectromelia virus suppresses cytolytic lymphocyte responses and overcomes genetic resistance to mousepox. J Virol 75: 1205–1210

    Article  PubMed  CAS  Google Scholar 

  45. van Den Broek M, Bachmann MF, Kohler G, Barner M, Escher R, Zinkernagel R, Kopf M (2000) IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-gamma and nitric oxide synthetase 2. J Immunol 164: 371–378

    Google Scholar 

  46. Ramshaw IA, Ramsay AJ, Karupiah G, Rolph MS, Mahalingam S, Ruby JC (1997) Cytokines and immunity to viral infections. Immunol Rev 159: 119–135

    Article  PubMed  CAS  Google Scholar 

  47. Norbury CC, Basta S, Donohue KB, Tscharke DC, Princiotta MF, Berglund P, Gibbs J, Bennink JR, Yewdell JW (2004) CD8+ T cell cross-priming via transfer of proteasome substrates. Science 304: 1318–1321

    Article  PubMed  CAS  Google Scholar 

  48. Serna A, Ramirez MC, Soukhanova A, Sigal LJ (2003) Cutting edge: efficient MHC class I cross-presentation during early vaccinia infection requires the transfer of proteasomal intermediates between antigen donor and presenting cells. J Immunol 171: 5668–5672

    PubMed  CAS  Google Scholar 

  49. Karupiah G, Buller RM, Van Rooijen N, Duarte CJ, Chen J (1996) Different roles for CD4+ and CD8+ T lymphocytes and macrophage subsets in the control of a generalized virus infection. J Virol 70: 8301–8309

    PubMed  CAS  Google Scholar 

  50. Worku S, Gorse GJ, Belshe RB, Hoft DF (2001) Canarypox vaccines induce antigen-specific human gammadelta T cells capable of interferon-gamma production. J Infect Dis 184: 525–532

    Article  PubMed  CAS  Google Scholar 

  51. Selin LK, Santolucito PA, Pinto AK, Szomolanyi-Tsuda E, Welsh RM (2001) Innate immunity to viruses: control of vaccinia virus infection by gamma delta T cells. J Immunol 166: 6784–6794

    PubMed  CAS  Google Scholar 

  52. Fulginiti V, Kempe CH, Hathaway WE, Pearlman DS, Sieber OF, Eller JJ, Joyner JJ Sr, Robinson A (1968) Progressive vaccinia in immunologically-deficient individuals. Birth Defects Orig Artic Ser 4: 129–145

    Google Scholar 

  53. Good RA, Varco RL (1955) A clinical and experimental study of agammaglobulinemia. J Lancet 75: 245–271

    PubMed  CAS  Google Scholar 

  54. CDC (1982) Vaccinia necrosum after smallpox vaccination-Michigan. MMWR Morb Mortal Wkly Rep 31: 501–502

    Google Scholar 

  55. Freed ER, Duma RJ, Escobar MR (1972) Vaccinia necrosum and its relationship to impaired immunologic responsiveness. Am J Med 52: 411–420

    Article  PubMed  CAS  Google Scholar 

  56. Mihailescu R, Topciu V, Dogaru D, Petrovici A, Plavosin L, Stanciu N, Moldovan E, Roth L (1979) Laboratory diagnosis in a case of fatal progressive vaccinia due to manifest immunologic deficiencies. Zentralbl Bakteriol B 169: 510–518

    PubMed  CAS  Google Scholar 

  57. White CM (1963) Vaccinia gangrenosa due to hypogammaglobulinemia. Lancet 1: 969–971

    Article  PubMed  CAS  Google Scholar 

  58. Somers K (1957) Vaccinia gangrenosa and agammaglobulinaemia. Arch Dis Child 32: 220–225

    Article  PubMed  CAS  Google Scholar 

  59. Kozinn PJ, Sigel MM, Gorrie R (1955) Progressive vaccinia associated with agammaglobulinemia and defects in immune mechanism. Pediatrics 16: 600–608

    PubMed  CAS  Google Scholar 

  60. Carson MJ, Donnell GN (1956) Vaccinia gangrenosa; a case in a child with hypogammaglobulinemia. Calif Med 85: 335–339

    PubMed  CAS  Google Scholar 

  61. Olding-Stenkvist E, Nordbring F, Larsson E, Lindblom B, Wigzell H (1980) Fatal progressive vaccinia in two immunodeficient infants. Scand J Infect Dis Suppl 24: 63–67

    Google Scholar 

  62. Xu R, Johnson AJ, Liggitt D, Bevan MJ (2004) Cellular and humoral immunity against vaccinia virus infection of mice. J Immunol 172: 6265–6271

    PubMed  CAS  Google Scholar 

  63. Fang Mand Sigal LJ (2005) Antibodies and CD8+ T cells are complementary and essential for natural resistance to a highly lethal cytopathic virus. J Immunol 175: 6829–6836

    PubMed  CAS  Google Scholar 

  64. Collier WA, Smit AM, von Heerde AF (1950) Demonstration of antihemagglutinins as an aid in the diagnosis of smallpox. Z Hyg Infektionskr 131: 555–567

    Article  PubMed  CAS  Google Scholar 

  65. Downie AW, McCarthy K (1958) The antibody response in man following infection with viruses of the pox group. III. Antibody response in smallpox. J Hyg (Lond) 56: 479–487

    CAS  Google Scholar 

  66. Downie AW, Saint VL, Goldstein L, Rao AR, Kempe CH (1969) Antibody response in non-haemorrhagic smallpox patients. J Hyg (Lond) 67: 609–618

    CAS  Google Scholar 

  67. Herrlich A, Mayr A, Mahnel H (1959) Antibody picture of variola vaccine infection. II. Serological studies on variola patients. Zentralbl Bakteriol [Orig] 175: 163–182

    CAS  Google Scholar 

  68. McCarthy K, Downie AW, Bradley WH (1958) The antibody response in man following infection with viruses of the pox group. II. Antibody response following vaccination. J Hyg (Lond) 56: 466–478

    CAS  Google Scholar 

  69. Belshe RB, Newman FK, Frey SE, Couch RB, Treanor JJ, Tacket CO, Yan L (2004) Dose-dependent neutralizing-antibody responses to vaccinia. J Infect Dis 189: 493–497

    Article  PubMed  Google Scholar 

  70. Frey SE, Newman FK, Yan L, Lottenbach KR, Belshe RB (2003) Response to smallpox vaccine in persons immunized in the distant past. JAMA 289: 3295–3299

    Article  PubMed  Google Scholar 

  71. Frey SE, Couch RB, Tacket CO, Treanor JJ, Wolff M, Newman FK, Atmar RL, Edelman R, Nolan CM, Belshe RB (2002) Clinical responses to undiluted and diluted smallpox vaccine. N Engl J Med 346: 1265–1274

    Article  PubMed  CAS  Google Scholar 

  72. Frey SE, Newman FK, Cruz J, Shelton WB, Tennant JM, Polach T, Rothman AL, Kennedy JS, Wolff M, Belshe RB, Ennis FA (2002) Dose-related effects of smallpox vaccine. N Engl J Med 346: 1275–1280

    Article  PubMed  CAS  Google Scholar 

  73. Kennedy JS, Frey SE, Yan L, Rothman AL, Cruz J, Newman FK, Orphin L, Belshe RB, Ennis FA (2004) Induction of human T cell-mediated immune responses after primary and secondary smallpox vaccination. J Infect Dis 190: 1286–1294

    Article  PubMed  Google Scholar 

  74. Downie AW, Hobday TL, St Vincent L, Kempe CH (1961) Studies of smallpox antibody levels of sera from samples of the vaccinated adult population of Madras. Bull World Health Organ 25: 55–61

    PubMed  CAS  Google Scholar 

  75. Downie AW, Saint VL, Rao AR, Kempe CH (1969) Antibody response following smallpox vaccination and revaccination. J Hyg (Lond) 67: 603–608

    CAS  Google Scholar 

  76. Herrlich A, Mayr A, Munz E (1956) Antibody picture of variola vaccine infection. I. Varying antibody formation in the vaccine infection of rabbits, monkeys and humans. Zentralbl Bakteriol [Orig] 166: 73–83

    CAS  Google Scholar 

  77. Kempe CH, Benenson AS (1953) Vaccinia; passive immunity in newborn infants. I.Placental transmission of antibodies. II. Response to vaccinations. J Pediatr 42: 525–531

    CAS  Google Scholar 

  78. Hammarlund E, Lewis MW, Hansen SG, Strelow LI, Nelson JA, Sexton GJ, Hanifin JM, Slifka MK (2003) Duration of antiviral immunity after smallpox vaccination. Nat Med 9: 1131–1137

    Article  PubMed  CAS  Google Scholar 

  79. Crotty S, Felgner P, Davies H, Glidewell J, Villarreal L, Ahmed R (2003) Cutting edge: long-term B cell memory in humans after smallpox vaccination. J Immunol 171: 4969–4973

    PubMed  CAS  Google Scholar 

  80. Barbero GJ, Gray A, Scott TF, Kempe CH (1955) Vaccinia gangrenosa treated with hyperimmune vaccinal gamma globulin. Pediatrics 16: 609–618

    PubMed  CAS  Google Scholar 

  81. Kempe CH, Berge TO, England B (1956) Hyperimmune vaccinal gamma globulin; source, evaluation, and use in prophylaxis and therapy. Pediatrics 18: 177–188

    PubMed  CAS  Google Scholar 

  82. Kempe CH, Bowles C, Meiklejohn G, Berge TO, St Vincent L, Babu BV, Govindarajan S, Ratnakannan NR, Downie AW, Murthy VR (1961) The use of vaccinia hyperimmune gamma-globulin in the prophylaxis of smallpox. Bull World Health Organ 25: 41–48

    PubMed  CAS  Google Scholar 

  83. Marennikova SS (1962) The use of hyperimmune antivaccinia gamma-globulin for the prevention and treatment of smallpox. Bull World Health Organ 27: 325–330

    PubMed  CAS  Google Scholar 

  84. Peirce ER, Melville FS, Downie AW, Duckworth MJ (1958) Anti-vaccinial gamma-globulin in smallpox prophylaxis. Lancet 2: 635–638

    Article  PubMed  CAS  Google Scholar 

  85. Sharp JC, Fletcher WB (1973) Experience of anti-vaccinia immunoglobulin in the United Kingdom. Lancet 1: 656–659

    Article  PubMed  CAS  Google Scholar 

  86. Hopkins RJ, Lane JM (2004) Clinical efficacy of intramuscular vaccinia immune globulin: a literature review. Clin Infect Dis 39: 819–826

    Article  PubMed  CAS  Google Scholar 

  87. Kempe CH (1960) Studies on smallpox and complications of smallpox vaccination. Pediatrics 26: 176–189

    PubMed  CAS  Google Scholar 

  88. Neff JM, Lane JM, Pert JH, Moore R, Millar JD, Henderson DA (1967) Complications of smallpox vaccination. I. National survey in the United States, 1963. N Engl J Med 276: 125–132

    Article  PubMed  CAS  Google Scholar 

  89. Appleyard G, Hapel AJ, Boulter EA (1971) An antigenic difference between intracellular and extracellular rabbitpox virus. J Gen Virol 13: 9–17

    Article  PubMed  CAS  Google Scholar 

  90. Belyakov IM, Earl P, Dzutsev A, Kuznetsov VA, Lemon M, Wyatt LS, Snyder JT, Ahlers JD, Franchini G, Moss B, Berzofsky JA (2003) Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc Natl Acad Sci USA 100: 9458–9463

    Article  PubMed  CAS  Google Scholar 

  91. Czerny CP, Mahnel H (1990) Structural and functional analysis of orthopoxvirus epitopes with neutralizing monoclonal antibodies. J Gen Virol 71: 2341–2352

    PubMed  CAS  Google Scholar 

  92. Edghill-Smith Y, Golding H, Manischewitz J, King LR, Scott D, Bray M, Nalca A, Hooper JW, Whitehouse CA, Schmitz JE, Reimann KA, Franchini G (2005) Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat Med 11: 740–747

    Article  PubMed  CAS  Google Scholar 

  93. Galmiche MC, Goenaga J, Wittek R, Rindisbacher L (1999) Neutralizing and protective antibodies directed against vaccinia virus envelope antigens. Virology 254: 71–80

    Article  PubMed  CAS  Google Scholar 

  94. Jackson TM, Zaman SN, Huq F (1977) T and B rosetting lymphocytes in the blood of smallpox patients. Am J Trop Med Hyg 26: 517–519

    PubMed  CAS  Google Scholar 

  95. O’Connel CJ, Karzon DT, Barron AL, Plaut ME, Ali VM (1964) Progressive vaccinia with normal antibodies. A case possibly due to deficient cellular immunity. Ann Intern Med 60: 282–289

    Google Scholar 

  96. Redfield RR, Wright DC, James WD, Jones TS, Brown C, Burke DS (1987) Disseminated vaccinia in a military recruit with human immunodeficiency virus (HIV) disease. N Engl J Med 316: 673–676

    Article  PubMed  CAS  Google Scholar 

  97. Amara RR, Nigam P, Sharma S, Liu J, Bostik V (2004) Long-lived poxvirus immunity, robust CD4 help, and better persistence of CD4 than CD8 T cells. J Virol 78: 3811–3816

    Article  PubMed  CAS  Google Scholar 

  98. Combadiere B, Boissonnas A, Carcelain G, Lefranc E, Samri A, Bricaire F, Debre P, Autran B (2004) Distinct time effects of vaccination on long-term proliferative and IFN-gamma-producing T cell memory to smallpox in humans. J Exp Med 199: 1585–1593

    Article  PubMed  CAS  Google Scholar 

  99. Ennis FA, Cruz J, Demkowicz WE Jr, Rothman AL, McClain DJ (2002) Primary induction of human CD8+ cytotoxic T lymphocytes and interferon-gamma-producing T cells after smallpox vaccination. J Infect Dis 185: 1657–1659

    Article  PubMed  Google Scholar 

  100. Hsieh SM, Pan SC, Chen SY, Huang PF, Chang SC (2004) Age distribution for T cell reactivity to vaccinia virus in a healthy population. Clin Infect Dis 38: 86–89

    Article  PubMed  Google Scholar 

  101. Littaua RA, Takeda A, Cruz J, Ennis FA (1992) Vaccinia virus-specific human CD4+ cytotoxic T-lymphocyte clones. J Virol 66: 2274–2280

    PubMed  CAS  Google Scholar 

  102. Abate G, Eslick J, Newman FK, Frey SE, Belshe RB, Monath TP, Hoft DF (2005) Flow-cytometric detection of vaccinia-induced memory effector CD4(+), CD8(+), and gamma delta TCR(+) T cells capable of antigen-specific expansion and effector functions. J Infect Dis 192: 1362–1371

    Article  PubMed  CAS  Google Scholar 

  103. von Herrath MG, Yokoyama M, Dockter J, Oldstone MB Whitton JL (1996) CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J Virol 70: 1072–1079

    Google Scholar 

  104. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003) CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421: 852–856

    Article  PubMed  CAS  Google Scholar 

  105. Shedlock DJ, Shen H (2003) Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300: 337–339

    Article  PubMed  CAS  Google Scholar 

  106. Sun JC, Bevan MJ (2003) Defective CD8_T cell memory following acute infection without CD4 T cell help. Science 300: 339–342

    Article  PubMed  CAS  Google Scholar 

  107. Sun JC, Williams MA, Bevan MJ (2004) CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5: 927–933

    Article  PubMed  CAS  Google Scholar 

  108. Appleyard G, Andrews C (1974) Neutralizing activities of antisera to poxvirus soluble antigens. J Gen Virol 23: 197–200

    PubMed  CAS  Google Scholar 

  109. Law M, Smith GL (2001) Antibody neutralization of the extracellular enveloped form of vaccinia virus. Virology 280: 132–142

    Article  PubMed  CAS  Google Scholar 

  110. Bell E, Shamim M, Whitbeck JC, Sfyroera G, Lambris JD, Isaacs SN (2004) Antibodies against the extracellular enveloped virus B5R protein are mainly responsible for the EEV neutralizing capacity of vaccinia immune globulin. Virology 325: 425–431

    Article  PubMed  CAS  Google Scholar 

  111. Lustig S, Fogg C, Whitbeck JC, Moss B (2004) Synergistic neutralizing activities of antibodies to outer membrane proteins of the two infectious forms of vaccinia virus in the presence of complement. Virology 328: 30–35

    Article  PubMed  CAS  Google Scholar 

  112. Demkowicz WE, Maa JS, Esteban M (1992) Identification and characterization of vaccinia virus genes encoding proteins that are highly antigenic in animals and are immunodominant in vaccinated humans. J Virol 66: 386–398

    PubMed  CAS  Google Scholar 

  113. Hsiao JC, Chung CS, Chang W (1999) Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J Virol 73: 8750–8761

    PubMed  CAS  Google Scholar 

  114. Ichihashi Y, Oie M (1996) Neutralizing epitope on penetration protein of vaccinia virus. Virology 220: 491–494

    Article  PubMed  CAS  Google Scholar 

  115. Wolffe EJ, Vijaya S, Moss B (1995) A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology 211: 53–63

    Article  PubMed  CAS  Google Scholar 

  116. Lin CL, Chung CS, Heine HG, Chang W (2000) Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J Virol 74: 3353–3365

    Article  PubMed  CAS  Google Scholar 

  117. Rodriguez JF, Janeczko R, Esteban M (1985) Isolation and characterization of neutralizing monoclonal antibodies to vaccinia virus. J Virol 56: 482–488

    PubMed  CAS  Google Scholar 

  118. Doolan DL, Southwood S, Freilich DA, Sidney J, Graber NL, Shatney L, Bebris L, Florens L, Dobano C, Witney AA et al (2003) Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data. Proc Natl Acad Sci USA 100: 9952–9957

    Article  PubMed  CAS  Google Scholar 

  119. Parker KC, Bednarek MA, Hull LK, Utz U, Cunningham B, Zweerink HJ, Biddison WE, Coligan JE (1992) Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J Immunol 149: 3580–3587

    PubMed  CAS  Google Scholar 

  120. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152: 163–175

    PubMed  CAS  Google Scholar 

  121. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50: 213–219

    Article  PubMed  CAS  Google Scholar 

  122. Drexler I, Staib C, Kastenmuller W, Stevanovic S, Schmidt B, Lemonnier FA, Rammensee HG, Busch DH, Bernhard H, Erfle V, Sutter G (2003) Identification of vaccinia virus epitope-specific HLA-A*0201-restricted T cells and comparative analysis of smallpox vaccines. Proc Natl Acad Sci USA 100: 217–222

    Article  PubMed  CAS  Google Scholar 

  123. Terajima M, Cruz J, Raines G, Kilpatrick ED, Kennedy JS, Rothman AL, Ennis FA (2003) Quantitation of CD8+ T cell responses to newly identified HLA-A*0201-restricted T cell epitopes conserved among vaccinia and variola (smallpox) viruses. J Exp Med 197: 927–932

    Article  PubMed  CAS  Google Scholar 

  124. Snyder JT, Belyakov IM, Dzutsev A, Lemonnier F, Berzofsky JA (2004) Protection against lethal vaccinia virus challenge in HLA-A2 transgenic mice by immunization with a single CD8+ T-cell peptide epitope of vaccinia and variola viruses. J Virol 78: 7052–7060

    Article  PubMed  CAS  Google Scholar 

  125. Oseroff C, Kos F, Bui HH, Peters B, Pasquetto V, Glenn J, Palmore T, Sidney J, Tscharke DC, Bennink JR et al (2005) HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation. Proc Natl Acad Sci USA 102: 13980–13985

    Article  PubMed  CAS  Google Scholar 

  126. Pasquetto V, Bui HH, Giannino R, Mirza F, Sidney J, Oseroff C, Tscharke DC, Irvine K, Bennink JR, Peters B et al (2005) HLA-A*0201, HLA-A*1101, and HLA-B*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products. J Immunol 175: 5504–5515

    PubMed  CAS  Google Scholar 

  127. Mathew A, Terajima M, West K, Green S, Rothman AL, Ennis FA, Kennedy JS (2005) Identification of murine poxvirus-specific CD8+ CTL epitopes with distinct functional profiles. J Immunol 174: 2212–2219

    PubMed  CAS  Google Scholar 

  128. Tscharke DC, Karupiah G, Zhou J, Palmore T, Irvine KR, Haeryfar SM, Williams S, Sidney J, Sette A, Bennink JR, Yewdell JW (2005) Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J Exp Med 201: 95–104

    Article  PubMed  CAS  Google Scholar 

  129. Jenner E (1798) An inquiry into the causes and effects of the variolae vaccinae, a disease discovered in some of the western counties of England, particularly Gloucestershire, and known by the name of the cow pox, London Classics of medicine and surgery. Dover, New York, 213–240

    Google Scholar 

  130. Jezek Z, Fenner F (1988) Human Monkeypox. Monographs in Virology, No. 17. Karger, Basel

    Google Scholar 

  131. Mack TM, Noble J Jr, Thomas DB (1972) A prospective study of serum antibody and protection against smallpox. Am J Trop Med Hyg 21: 214–218

    PubMed  CAS  Google Scholar 

  132. Sarkar JK, Mitra AC, Mukherjee MK (1975) The minimum protective level of antibodies in smallpox. Bull World Health Organ 52: 307–311

    PubMed  CAS  Google Scholar 

  133. Stienlauf S, Shoresh M, Solomon A, Lublin-Tennenbaum T, Atsmon Y, Meirovich Y, Katz E (1999) Kinetics of formation of neutralizing antibodies against vaccinia virus following re-vaccination. Vaccine 17: 201–204

    Article  PubMed  CAS  Google Scholar 

  134. Moller-Larsen A, Haahr S (1978) Humoral and cell-mediated immune responses in humans before and after revaccination with vaccinia virus. Infect Immun 19: 34–39

    PubMed  CAS  Google Scholar 

  135. Viner KM, Isaacs SN (2005) Activity of vaccinia virus-neutralizing antibody in the sera of smallpox vaccines. Microbes Infect 7: 579–583

    PubMed  CAS  Google Scholar 

  136. Orr N, Forman M, Marcus H, Lustig S, Paran N, Grotto I, Klement E, Yehezkelli Y, Robin G, Reuveny S et al (2004) Clinical and immune responses after revaccination of Israeli adults with the Lister strain of vaccinia virus. J Infect Dis 190: 1295–1302

    Article  PubMed  Google Scholar 

  137. Moller-Larsen A, Haahr S, Heron I (1978) Lymphocyte-mediated cytotoxicity in humans during revaccination with vaccinia virus. Infect Immun 21: 687–695

    PubMed  CAS  Google Scholar 

  138. Monath TP, Caldwell JR, Mundt W, Fusco J, Johnson CS, Buller M, Liu J, Gardner B, Downing G, Blum PS et al (2004) ACAM 2000 clonal Vero cell culture vaccinia virus (New York City Board of Health strain)-a secondgeneration smallpox vaccine for biological defense. Int J Infect Dis 8(Suppl 2): S31–S44

    Article  PubMed  Google Scholar 

  139. Artenstein AW, Johnson C, Marbury TC, Morrison D, Blum PS, Kemp T, Nichols R, Balser JP, Currie M, Monath TP (2005) A novel, cell culture-derived smallpox vaccine in vaccinia-naive adults. Vaccine 23: 3301–3309

    Article  PubMed  CAS  Google Scholar 

  140. Greenberg RN, Kennedy JS, Clanton DJ, Plummer EA, Hague L, Cruz J, Ennis FA, Blackwelder WC, Hopkins RJ (2005) Safety and immunogenicity of new cell-cultured smallpox vaccine compared with calf-lymph derived vaccine: a blind, single-centre, randomised controlled trial. Lancet 365: 398–409

    PubMed  CAS  Google Scholar 

  141. Drexler I, Staib C, Sutter G (2004) Modified vaccinia virus Ankara as antigen delivery system: how can we best use its potential? Curr Opin Biotechnol 15: 506–512

    Article  PubMed  CAS  Google Scholar 

  142. Carroll MW, Moss B (1997) Host range and cytopathogenicity of the highly attenuated MVA strain of vaccinia virus: propagation and generation of recombinant viruses in a nonhuman mammalian cell line. Virology 238: 198–211

    Article  PubMed  CAS  Google Scholar 

  143. Staib C, Kisling S, Erfle V, Sutter G (2005) Inactivation of the viral interleukin 1beta receptor improves CD8+ T-cell memory responses elicited upon immunization with modified vaccinia virus Ankara. J Gen Virol 86: 1997–2006

    Article  PubMed  CAS  Google Scholar 

  144. Blanchard TJ, Alcami A, Andrea P, Smith GL (1998) Modified vaccinia virus Ankara undergoes limited replication in human cells and lacks several immunomodulatory proteins: implications for use as a human vaccine. J Gen Virol 79: 1159–1167

    PubMed  CAS  Google Scholar 

  145. Antoine G, Scheiflinger F, Dorner F, Falkner FG (1998) The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244: 365–396

    Article  PubMed  CAS  Google Scholar 

  146. Werner GT, Jentzsch U, Metzger E, Simon J (1980) Studies on poxvirus infections in irradiated animals. Arch Virol 64: 247–256

    Article  PubMed  CAS  Google Scholar 

  147. Mayr A, Stickl H, Muller HK, Danner K, Singer H (1978) The smallpox vaccination strain MVA: marker, genetic structure, experience gained with the parenteral vaccination and behavior in organisms with a debilitated defence mechanism (author’s transl). Zentralbl Bakteriol B 167: 375–390

    PubMed  CAS  Google Scholar 

  148. Hochstein-Mintzel V, Hanichen T, Huber HC, Stickl H (1975) An attenuated strain of vaccinia virus (MVA). Successful intramuscular immunization against vaccinia and variola (author’s transl). Zentralbl Bakteriol [Orig A] 230: 283–297

    CAS  Google Scholar 

  149. Meseda CA, Garcia AD, Kumar A, Mayer AE, Manischewitz J, King LR, Golding H, Merchlinsky M, Weir JP (2005) Enhanced immunogenicity and protective effect conferred by vaccination with combinations of modified vaccinia virus Ankara and licensed smallpox vaccine Dryvax in a mouse model. Virology 339: 164–175

    Article  PubMed  CAS  Google Scholar 

  150. Hashizume S, Yoshizawa H, Morita M, Suzuki K (1985) Properties of Attenuated Mutant of Vaccinia Virus, LC16m8, Derived from the Lister Strain. In: G Quinnan (ed): Vaccinia viruses as vectors for vaccine antigens. Elsevier, New York, 87–99

    Google Scholar 

  151. Takahashi-Nishimaki F, Funahashi S, Miki K, Hashizume S, Sugimoto M (1991) Regulation of plaque size and host range by a vaccinia virus gene related to complement system proteins. Virology 181: 158–164

    Article  PubMed  CAS  Google Scholar 

  152. Yamaguchi M, Kimura M, Hirayama M (1975) Report of the National Smallpox Vaccination Research Committee: study of side effects, complications and their treatments. Clin Virol 3: 269–278 (in Japanese)

    Google Scholar 

  153. Empig C, Kenner JR, Perret-Gentil M, Youree BE, Bell E, Chen A, Gurwith M, Higgins K, Lock M, Rice AD et al (2005) Highly attenuated smallpox vaccine protects rabbits and mice against pathogenic orthopoxvirus challenge. Vaccine 24: 3686–3694

    Article  CAS  Google Scholar 

  154. Boulter EA, Zwartouw HT, Titmuss DH, Maber HB (1971) The nature of the immune state produced by inactivated vaccinia virus in rabbits. Am J Epidemiol 94: 612–620

    PubMed  CAS  Google Scholar 

  155. Lai CF, Gong SC, Esteban M (1991) The purified 14-kilodalton envelope protein of vaccinia virus produced in Escherichia coli induces virus immunity in animals. J Virol 65: 5631–5635

    PubMed  CAS  Google Scholar 

  156. Law M, Putz MM, Smith GL (2005) An investigation of the therapeutic value of vaccinia-immune IgG in a mouse pneumonia model. J Gen Virol 86: 991–1000

    Article  PubMed  CAS  Google Scholar 

  157. Hooper JW, Custer DM, Thompson E (2003) Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology 306: 181–195

    Article  PubMed  CAS  Google Scholar 

  158. Hooper JW, Thompson E, Wilhelmsen C, Zimmerman M, Ichou MA, Steffen SE, Schmaljohn CS, Schmaljohn AL, Jahrling PB (2004) Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. J Virol 78: 4433–4443

    Article  PubMed  CAS  Google Scholar 

  159. Fogg C, Lustig S, Whitbeck JC, Eisenberg RJ, Cohen GH, Moss B (2004) Protective immunity to vaccinia virus induced by vaccination with multiple recombinant outer membrane proteins of intracellular and extracellular virions. J Virol 78: 10230–10237

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Handley, L.M., Mackey, J.P., Buller, R.M., Bellone, C.J. (2007). Orthopoxvirus vaccines and vaccination. In: Mercer, A.A., Schmidt, A., Weber, O. (eds) Poxviruses. Birkhäuser Advances in Infectious Diseases. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7557-7_16

Download citation

Publish with us

Policies and ethics