Poxviruses pp 297-310 | Cite as

Immunomodulation by inactivated Orf virus (ORFV) - therapeutic potential

  • Olaf Weber
  • Percy Knolle
  • Hans-Dieter Volk
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Viruses manipulate the immune system either by bypassing or suppressing the immune reaction or by activation of the immune system.

Orf virus (ORFV) is an epitheliotropic DNA virus that belongs to the parapoxvirus genus of the poxvirus family. ORFV can repeatedly infect its host in spite of a vigorous inflammatory and complex host immune response. The viral genome encodes several immunomodulating genes, including orthologues of IL-10, and mammalian vascular endothelial growth factor (VEGF).

Novel immunomodulating agents that are based on active or inactivated poxviruses might have therapeutic potential in various diseases where the immune system is out of its balance; ORFV-based drugs are already used in veterinary medicine for prophylactic and therapeutic uses.

Inactivated ORFV showed strong effects on cytokine secretion by human immune cells which involved up-regulation of inflammatory and Th1-related cytokines as well as anti-inflammatory and Th2-related cytokines. This combination of suppressive and stimulating mechanisms could be exploited as a novel principle of therapeutic immunomodulation.

Current preclinical data, together with a favourable side effect profile, call for further investigation of ORFV for its potential use as a novel immunomodulatory agent.


Recurrent Genital Herpes Feline Infectious Peritonitis Favorable Side Effect Profile Poxvirus Family Contagious Pustular Dermatitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koch FE (1938) Experimentelle Untersuchungen über entzündungs-und nekroseerzeugende Wirkung von Viscum album. Z Ges Exp Med 103: 740–747Google Scholar
  2. 2.
    Luther P, Mehnert WH, Graffi A, Prokop O (1973) Reaktionen einiger antikörperähnlicher Strukturen aus Insekten (Prolektin) und Pflanzen (Lektine) mit Ascites-Tumorzellen. Acta Biol Med Ger 31: K11–K18PubMedGoogle Scholar
  3. 3.
    Kienle GS (1999) The story behind mistletoe: A european remedy from antroposophical medicine. Altern Ther 5: 34–37Google Scholar
  4. 4.
    Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE (1994) Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin-2. JAMA 271: 907–913PubMedCrossRefGoogle Scholar
  5. 5.
    Rosenberg SA (2000) Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer. Cancer J Sci Am 6: 2–7Google Scholar
  6. 6.
    Hoofnagle JH, Lau D (1997) New therapies for chronic hepatitis B. Viral Hepat 4: 41–50Google Scholar
  7. 7.
    Michielsen P, Brenard R, Reynard H (2002) Treatment of hepatitis C: impact on the virus, quality of life and the natural history. Acta Gastroenterol Belg 65: 90–94PubMedGoogle Scholar
  8. 8.
    Indar A, Maxwell-Armstrong CA, Durrant LG, Carmichael J, Schelefield JH (2002) Current concepts in immunotherapy for the treatment of colorectal cancer. JR Coll Surg Edinb 47: 458–474Google Scholar
  9. 9.
    Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM et al (1995) CpG motifs in bacterial DNA trigger direct Bcell activation. Nature 374: 546–549PubMedCrossRefGoogle Scholar
  10. 10.
    Pisetsky DS (1997) Immunostimulatory DNA: a clear and present danger? Nat Med 8: 829–831CrossRefGoogle Scholar
  11. 11.
    Krieg AM (2003) CpG DNA: trigger of sepsis, mediator of protection, or both? Scand J Infect Dis 35: 653–659PubMedCrossRefGoogle Scholar
  12. 12.
    Heikenwalder M, Polymenidou M, Junt T, Sigurdson C, Wagner H, Akira S, Zinkernagel R, Aguzzi A (2004) Lymphoid follicle destruction and immunsuppression after repeated CpG oligonukleotide administration. Nat Med 2: 187–192CrossRefGoogle Scholar
  13. 13.
    Marrack P, Kappler J (1994) Subversion of immune system by pathogens. Cell 76: 323–332PubMedCrossRefGoogle Scholar
  14. 14.
    Lane HC, Depper JM, Greene WC, Whalen G, Waldmann TA, Fauci AS (1985) Qualitative analysis of immune function in patients with the aquired immunodeficiency syndrome. Evidence for a selective defect in soluble antigen recognition. N Engl J Med 313: 79–84Google Scholar
  15. 15.
    Moore KW, Vieira P, Fiorentino DF, Trounstine ML, Khan TA, Mosmann TR (1990) Homology of cytokine synthesis inhibitory factor (IL-10) to the Epstein-Barr virus gene BCRF1. Science 248: 1230–1234PubMedCrossRefGoogle Scholar
  16. 16.
    delVal M, Hengel H, Häcker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med 176: 729–738CrossRefGoogle Scholar
  17. 17.
    Yamashita Y, Shimokata K, Mizuno S, Yamaguchi H, Nishiyama Y (1993) Down-regulation of the surface expression of class I MHC antigens by human cytomegalovirus. Virology 193: 727–736PubMedCrossRefGoogle Scholar
  18. 18.
    Guidotti LG, Borrow P, Hobbs MV, Matzke B, Gresser I, Oldstone MB, Chisari FV (1996) Viral cross talk: Intracellular inactivation of the hepatitis B virus during an unrelated viral infection of the liver. Proc Natl Acad Sci USA 93: 4589–4594PubMedCrossRefGoogle Scholar
  19. 19.
    Cavanaugh VJ, Guidotti LG, Chisari FV (1998) Inhibition of Hepatitis B virus replication during adenovirus and cytomegalovirus infections in transgenic mice. J Virol 72 2630–2637PubMedGoogle Scholar
  20. 20.
    Pickup DJ (1994) Poxviral modifiers of cytokine responses to infection. Infect Agents Dis 3: 116–127PubMedGoogle Scholar
  21. 21.
    Haig DM, Mercer AA (1998) Ovine diseases. Orf. Vet Res 29: 311–326Google Scholar
  22. 22.
    McKeever DJ, Jenkinson DM, Hutchinson G, Reid HW (1988) Studies on the pathogenesis of orf virus infection in sheep. Comp Pathol 99: 317–328CrossRefGoogle Scholar
  23. 23.
    Haig D, McInnes C, Deane D, Lear A, Myatt N, Reid H, Rothel J, Seow HF, Wood P, Lyttle D, Mercer A (1996) Cytokines and their inhibitors in orf virus infection. Vet Immunol Immunopathol 54: 261–267PubMedCrossRefGoogle Scholar
  24. 24.
    Haig D, McInnes CJ, Deane D, Reid HW, Mercer AA (1997) The immune and inflammatory reponse to orf virus. Comp Immunol Microbiol Infect Dis 20: 197–204PubMedCrossRefGoogle Scholar
  25. 25.
    Haig DM, McInnes CJ (2002) Immunity and counter-immunity during infection with the parapoxvirus orf virus. Virus Res 88: 3–16PubMedCrossRefGoogle Scholar
  26. 26.
    Fleming SB, McCaughan CA, Andrews AE, Nash AD, Mercer AA (1997) A homolog of interleukin-10 is encoded by the poxvirus orf virus. J Virol 71: 4857–4861PubMedGoogle Scholar
  27. 27.
    Kruse N, Weber O (2001) Selective induction of apoptosis in antigen-presenting cells in mice by parapoxvirus ovis. J Virol 75: 4699–4704PubMedCrossRefGoogle Scholar
  28. 28.
    McKeever DJ, Reid HW, Inglis NF, Herring AJ (1987) A qualitative and quantitative assessment of the humoral antibody response of the sheep to orf virus infection. Vet Microbiol 15: 229–241PubMedCrossRefGoogle Scholar
  29. 29.
    Yirrell DL, Reid HW, Howie S (1989)Immune response of lambs to experimental infection with orf virus. Vet Immunol Immunopathol 22: 321–332PubMedCrossRefGoogle Scholar
  30. 30.
    Chand P, Kitching RP, Black DN (1994) Western blot analysis of virus-specific antibody responses for capripox and contagious pustular dermatitis viral infection in sheep. Epidemiol Infect 113: 77–85CrossRefGoogle Scholar
  31. 31.
    Sullivan JT, Mercer AA, Fleming SB, Robinson AJ (1994) Identification and characterization of an orf virus homologue of the vaccinia virus gene encoding the major envelope antigen p37K. Virology 202: 968–973PubMedCrossRefGoogle Scholar
  32. 32.
    Buettner M, Czerny CP, Lehner KH, Wertz K (1995) Interferon induction in peripheral blood mononuclear leukocytes of man and farm animals by poxvirus vector candidates and some poxvirus constructs. Vet Immunol Immunopathol 46: 237–250CrossRefGoogle Scholar
  33. 33.
    Foerster R, Wolf G, Mayr A (1994) Highly attenuated poxviruses induce functional priming of neutrophils in vitro. Arch Virol 136: 219–226CrossRefGoogle Scholar
  34. 34.
    Marsig E, Stickl H (1988) The effectiveness of immune modulatorsfrom microorganisms and of animal pox preparations against tumor cell lines in vitro. Zentralbl Veterinaermed 36: 81–99Google Scholar
  35. 35.
    Mayr A, Buettner M, Wolf G, Meyer H, Czerny C (1989) Experimental detection of the paraspecific effects of the purified and inactivated poxviruses. Zentralbl Veterinaermed 36: 81–99Google Scholar
  36. 36.
    Tzahar E, Moyer JD, Waterman H, Barbacci EG, Bao J, Levkowitz G, Shelly M, Strano S, Pinkas-Kramarski R, Pierce JH et al (1998) Pathogenic poxvi-ruses reveal viral strategies to exploit the ErB signaling network. EMBO J 17: 5948–5963PubMedCrossRefGoogle Scholar
  37. 37.
    Lyttle DJ, Frazer KM, Fleming SB, Mercer AA, Robinson AJ (1994) Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 68: 84–92PubMedGoogle Scholar
  38. 38.
    Haig DM, McInnes CJ, Thomson J, Wood A, Bunyan K, Mercer A (1998) The orf virus OV20.0L gene product is involved in interferon resistance and inhibits an interferon-inducible, double stranded RNA-dependent kinase. Immunology 93: 335–340PubMedCrossRefGoogle Scholar
  39. 39.
    Dean D, McInnes CJ, Percival A, Wood A, Thomson J, Lear A, Gilray J, Fleming S, Mercer A, Haig D (2000) Orf virus encodes a novel secreted protein inhibitor of granulocyte-macrophage colony-stimulating factor and interleukin 2. J Virol 74: 1313–1320CrossRefGoogle Scholar
  40. 40.
    Mayr A, Raettig H, Alexander M (1979) Paramunität, Paramunisierung, Paramunitätsinducer. Teil 1. Geschichtliche Entwicklung, Begriffsbestimmung und Wesen. Fortschr Med 97: 1159–1165PubMedGoogle Scholar
  41. 41.
    Mayr A, Raettig H, Alexander M (1979) Paramunität, Paramunisierung, Paramunitätsinducer. Teil 2.: Paramunitätsinducer, eigene Untersuchungen, Diskussion. Fortschr Med 97: 1205–1210PubMedGoogle Scholar
  42. 42.
    Mayr B, Mayr A (1995) Present state of preclinical research on the efficacy and safety of para immunity inducers from poxviruses. A study of the literature. Tierarztl Prax 23: 542–552Google Scholar
  43. 43.
    Förster RJ, Wolf G (1990) Phagozytosis of opsonized fluorescent microspheres by polymorphonuclear leukocytes. J Vet Med B 37: 481–490Google Scholar
  44. 44.
    Förster R, Wolf G, Mayr A (1994) Highly attenuated poxviruses induce functional priming of neutrophils in vitro. Arch Virol 136: 219–226PubMedCrossRefGoogle Scholar
  45. 45.
    Mayr A, Buettner M, Pawlas S, Erfle V, Mayr B, Brunner R, Osterkorn K (1986) Vergleichende Untersuchungen über die immunstimulierende (paramunisierende) Wirksamkeit von BCG, Levamisol, Corynebakterium parvum, und Präparaten aus Pockenviren in verschiedenen in vivo-und vitro-Testen. J Vet Med B 33: 321–339CrossRefGoogle Scholar
  46. 46.
    Altschuh CP (1985) Untersuchungen über die Wirksamkeit des Paramunitätsinducers PIND-AVI als Leberschutzsubstanz. Thesis, MünchenGoogle Scholar
  47. 47.
    Haig DM, McInnes CJ (1983) Influence of Immune modulators, liver inducing and protecting substances on thymidine metabolism of resting and regenerating hepatocytes. Falk Symposium no. 38, BaselGoogle Scholar
  48. 48.
    Vilsmeier B (1995) Entwicklung eines Zellkultur-Challenge-Tests zum Nachweis paramunisierender Aktivitäten verschiedener Präparationen aus Pockenviren. Thesis, MünchenGoogle Scholar
  49. 49.
    Leder P (1992) Untersuchungen zur Anregung der Lymphozytenproliferation, Aktivität der natürlichen Killerzellen und Interferon-alpha Induktion in humanen peripheren Blutlymphozyten nach in vitro Stimulierung mit verschiedenen Parapocken-Kulturpassagen. Thesis, MünchenGoogle Scholar
  50. 50.
    Steinmassl G, Wolf G (1990) Bildung von Interleukin 2 und Interferon-γ durch mononukleäre Leukozyten des Schweines nach in vitro-Stimulation mit verschiedenen Viruspräparaten. J Vet Med B 37: 321–331Google Scholar
  51. 51.
    Thein P, Hechler H, Mayr A (1981) Vergleichende Untersuchungen zur Wirksamkeit des Paramunitätsinducers PIND-AVI, des Mitogens PHA-P und von Rhinopneumonitisvirus auf die peripheren Lymphozyten des Pferdes. Zentralbl Veterinarmed Med B 28: 432–449Google Scholar
  52. 52.
    Belke G, Mayr A, Kaaden OR, Buettner M (1995) Induction and detection of mRNA, molecular clloning and sequencing of canine interleukin 12. The 4th International Veterinary Immunological Congress, Davis, CA, USA, July 15–21, 1995.Google Scholar
  53. 53.
    Mueller-Brunecker G, Erfle V, Mayr A (1984) Wirkungsvergleich von Paramunitätsinducern (PIND-AVI, PIND-ORF), Levamisol, BCG und C. parvum auf das Wachstum eines strahleninduzierten Osteosarkoms der Maus. Tierärztl Umschau 39: 366–368Google Scholar
  54. 54.
    Demel W (1992) Experimentelle Untersuchungen zur Biokinetik von Fluordeoxyglukose an Mäusen mit unterschiedlichen Tumoren. Thesis, MünchenGoogle Scholar
  55. 55.
    Mayr A, Baljer G, Sailer J, Schels D (1980) Untersuchungen über eine Strahlenschutzwirkung des Paramunitätsinducers PIND-AVI am Modell Tetanusschutzimpfung Maus nach Röntgenbestrahlung. Strahlentherapie 156: 795–799PubMedGoogle Scholar
  56. 56.
    Breiter N, Ungemach FR, Beck G, Hegner D, Mayr A (1985) Untersuchungen über die Wirksamkeit der Paramunitätsinducer PIBD-AVI und PIND-ORF als Strahlenschutzsubstanzen. Strahlentherapie 161: 168–176PubMedGoogle Scholar
  57. 57.
    Mayr A, Siebert M (1990) Untersuchungen über die Wirksamkeit des Paramunitätsinducers PIND-ORF auf den durch Transportstress ausgelösten Kortisolanstieg beim Pferd. Tierärztl Umschau 45: 677–682Google Scholar
  58. 58.
    Ziebell KL, Steinmann H, Kretzdorn D, Schlapp T, Failing K, Schmeer N (1997) The use of Baypamun N in crowding associated infectious respiratory disease: efficacy of Baypamun N (freeze dried product) in 4-10 month old horses. Zentralbl Veterinarmed B 44: 529–536PubMedGoogle Scholar
  59. 59.
    Castrucci G, Ferrari M, Osburn BI, Frigeri F, Barreca F, Tagliati S, Cuteri V (1995) The use of a non-specific defence mechanism inducer in calves exposed to bovine herpesvirus-1 infection: preliminary trials. Comp Immunol Microbiol Infect Dis 18: 85–91PubMedCrossRefGoogle Scholar
  60. 60.
    Castrucci G, Osburn BI, Ferrari M, Salvatori D, Lo Dico M, Barreca F (2000) The use of immunomudulators in the control of infectious bovine rhinotracheitis. Comp Immunol Microbiol Infect Dis 23: 163–173PubMedCrossRefGoogle Scholar
  61. 61.
    Mayr B, Deininger S, Büttner M (1991) Treatment of chronic stomatitis of cats by local paramunization with PIND-ORF. J Vet Med B 38: 78–80Google Scholar
  62. 62.
    Bölcskeiv A, Bilkei G (1995) Langzeitstudie über die behandelte FIP-verdächtige Katzen. Tierärztl Umschau 50: 721–728Google Scholar
  63. 63.
    Berg G, Rüsse M (1994) Der Einsatz von Baypamun HK in der Mammatumorbehandlung der Hündin. Tierärztl Umschau 49: 476–480Google Scholar
  64. 64.
    Guidotti LG, Rochford R, Chung J, Shapiro M, Purcell R, Chisari FV (1999) Viral clearance without destruction of infected cells during acute HBV infection. Science 284: 825–829PubMedCrossRefGoogle Scholar
  65. 65.
    Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, Chisari FV (1996) Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4: 25–36PubMedCrossRefGoogle Scholar
  66. 66.
    Weber O. Siegling A, Friebe A, Limmer A, Schlapp T, Knolle P, Mercer A, Schaller H, Volk HD (2003) Inactivated parapoxvirus ovis (orf virus) has antiviral activity against hepatitis B virus and herpes simplex virus. J Gen Virol 84: 1843–1852PubMedCrossRefGoogle Scholar
  67. 67.
    Micallef MJ, Ohtsuki T, Kohno K, Tanabe F, Ushio S, Namba M, Tanimoto T, Torigoe K, Fuji M, Ikeda M, Fukuda S, Kurimoto (1996) Interferon-gammainducing factor enhances T-helper-1 cytokine production by interferon-gamma production. Eur J Immunol 26: 1647–1651PubMedGoogle Scholar
  68. 68.
    Schijns VECJ, Haagemans BL, Wierda ChMH, Kruithof B, Heijnen IA, Alber G, Horzinek MC (1998) Mice lacking IL-12 develop polarized Th1_cells during viral inection. J Immunol 160: 3958–3964PubMedGoogle Scholar
  69. 69.
    Kimura K, Kakimi K, Wieland S, Guidotti LG, Chisari FV (2002) Interleukin-18 inhibits hepatitis B virus replication in the livers of transgenic mice. J Virol 76: 10702–10707PubMedCrossRefGoogle Scholar
  70. 70.
    Leite-de-Moraes MC, Hameg A, Pacilio M, Koezuka Y, Taniguchi M, Van Kaer L, Schneider E, Dy M, Herbelin A (2000) IL-18 enhances IL-4 production by ligand-activated NKT lymphocytes: a pro-Th2 effect of IL-18 exerted through NKT cells. J Immunol 166: 945–951Google Scholar
  71. 71.
    Smeltz RB, Chen J, Hu-Li J, Shevach EM (2001) Regulation of interleukin (IL)-18_receptor a chain expression on CD4+ T cells during T helper (Th)1/Th2 differentiation: critical downregulatory role of IL-4. J Exp Med 194: 143–153PubMedCrossRefGoogle Scholar
  72. 72.
    Friebe A, Siegling A, Friederichs S, Volk H-D, Weber O (2004) Immunomodulatory effects of inactivated parapoxvirus ovis (Orf-virus) on human peripheral immune cells-induction of cytokine secretion in monocytes and TH-1 like cells. J Virol 78: 9400–9411PubMedCrossRefGoogle Scholar
  73. 73.
    Knolle PA, Uhrig A, Hegenbarth S, Loser E, Schmitt E, Gerken G, Lohse AW (1998) IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol 114: 427–433PubMedCrossRefGoogle Scholar
  74. 74.
    Binder GK, Griffin DE (2001) Interferon-γ-mediated site-specific clearance of alphavirus from CNS neurons. Science 293: 303–306PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Olaf Weber
    • 1
  • Percy Knolle
    • 2
  • Hans-Dieter Volk
    • 3
  1. 1.Product-related ResearchBayer Healthcare AGWuppertalGermany
  2. 2.Institute for Molecular Medicine and Experimental ImmunologyUniversitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-UniversitätBonn
  3. 3.Institute of Medical ImmunologyHumboldt-Universität BerlinBerlinGermany

Personalised recommendations