Skip to main content

Subfamily Entomopoxvirinae

  • Chapter
Book cover Poxviruses

Part of the book series: Birkhäuser Advances in Infectious Diseases ((BAID))

Abstract

The subfamily Entomopoxvirinae is a related but distinct member of the family Poxviridae. These viruses share many biological features of the poxviruses of chordates, but instead infect the larvae of a number of insect families. The three genera that comprise the entomopoxviruses are the genus Alphaentomopoxvirus, infecting beetles; genus Betaentomopoxvirus, infecting butterflies, moths, grasshoppers, and locusts, and the genus Gammaentomopoxvirus infecting flies and mosquitoes. The entomopoxviruses, like their vertebrate counterparts, have a double-stranded linear DNA genome that is transcribed in a temporal fashion. Entomopoxviruses are occluded in a paracrystalline protein matrix, forming spheroids that protect the virus from environmental conditions. A number of genes are conserved between the entomopoxviruses and chordopoxviruses defining a minimal complement of poxvirus genes. The entomopoxviruses have some unique molecular features. This review covers pathogenesis, transcription, and molecular analysis of the entomopoxviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fauquet C, Mayo M, Maniloff J, Desselberger U, Ball L (2005) Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, 117–133

    Google Scholar 

  2. Vago C (1963) A new type of insect virus. J Insect Pathol 5: 275–276

    Google Scholar 

  3. Bawden AL, Glassberg KJ, Diggans J, Shaw R, Farmerie W, Moyer RW (2000) Complete genomic sequence of the Amsacta moorei entomopoxvirus: analysis and comparison with other poxviruses. Virology 274: 120–139

    Article  PubMed  CAS  Google Scholar 

  4. Afonso CL, Tulman ER, Lu Z, Oma E, Kutish GF, Rock DL (1999) The genome of Melanoplus sanguinipes entomopoxvirus. J Virol 73: 533–552

    PubMed  CAS  Google Scholar 

  5. Gubser C, Hue S, Kellam P, Smith GL (2004) Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85: 105–117

    Article  PubMed  CAS  Google Scholar 

  6. Upton C, Slack S, Hunter AL, Ehlers A, Roper RL (2003) Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol 77: 7590–7600

    Article  PubMed  CAS  Google Scholar 

  7. Patel DD, Pickup DJ, Joklik WK (1986) Isolation of cowpox virus A-type inclusions and characterization of their major protein component. Virology 149: 174–189

    Article  PubMed  CAS  Google Scholar 

  8. Fernon CA, Vera AP, Crnov R, Lai-Fook J, Osborne RJ, Dall DJ (1995) Replication of Heliothis armigera entomopoxvirus in vitro. J Invertebr Pathol 66: 216–233

    Article  Google Scholar 

  9. Winter J, Hall RL, Moyer RW (1995) The effect of inhibitors on the growth of the entomopoxvirus from Amsacta moorei in Lymantria dispar (gypsy moth) cells. Virology 211: 462–473

    Article  PubMed  CAS  Google Scholar 

  10. Granados RR, Naughton M (1975) Development of Amsacta moorei entomopoxvirus in ovarian and hemocyte cultures from Estigmene acrea larvae. Intervirology 5: 62–68

    PubMed  CAS  Google Scholar 

  11. Langridge WH, Roberts DW (1977) Molecular weight of DNA from four entomopoxviruses determined by electron microscopy. J Virol 21: 301–308

    PubMed  CAS  Google Scholar 

  12. Arif BM (1976) Isolation of an entomopoxvirus and characterization of its DNA. Virology 69: 626–634

    Article  PubMed  CAS  Google Scholar 

  13. Langridge WH, Bozarth RF, Roberts DW (1977) The base composition of entomopoxvirus DNA. Virology 76: 616–620

    Article  PubMed  CAS  Google Scholar 

  14. Langridge WHR (1984) Detection of DNA base sequence homology between entomopoxviruses isolated from lepidoptera and orthoptera. J Invertebr Pathol 43: 41–46

    Article  Google Scholar 

  15. Langridge WHR, Oma E, Henry JE (1983) Characterization of the DNA and structural proteins of entomopoxviruses from Melanoplus sanguinipes, Arphia conspirsa, and Phoetaliotes nebrascensis (Orthoptera). J Invertebr Pathol 42: 327–333

    Article  CAS  Google Scholar 

  16. Gauthier L, Cousserans F, Veyrunes JC, Bergoin M (1995) The Melolontha melolontha entomopoxvirus (Mmepv) fusolin is related to the fusolins of Lepidopteran Epvs and to the 37K baculovirus glycoprotein. Virology 208: 427–436

    Article  PubMed  CAS  Google Scholar 

  17. Gubser C, Hue S, Kellam P, Smith GL (2004) Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85: 105–117

    Article  PubMed  CAS  Google Scholar 

  18. Sutter GR (1972) Pox virus of army cutworm. J Invertebr Pathol 19: 375–382

    Article  Google Scholar 

  19. Wegensteiner R, Weiser J (1995) A new entomopoxvirus in the bark beetle Ips typographus (Coleoptera: Scolytidae). J Invertebr Pathol 65: 203–205

    Article  Google Scholar 

  20. Henry JE, Nelson BP, Jutila JW (1969) Pathology and development of grasshopper inclusion body virus in Melanoplus sanguinipes. J Virol 3: 605–610

    PubMed  Google Scholar 

  21. Huger AM, Krieg A, Emschermann P, Gotz P (1970) Further studies on polypoxvirus Chironomi, an insect virus of pox group isolated from midge Chironomus luridus. J Invertebr Pathol 15: 253–261

    Article  PubMed  CAS  Google Scholar 

  22. Mitchell FL, Smith J (1985) Pathology and bioassays of the lesser cornstalk borer (Elasmopalpus lignosellus) entomopoxvirus. J Invertebr Pathol 45: 75–80

    Article  Google Scholar 

  23. Roberts DW, Granados RR (1968) A poxlike virus from Amsacta moorei (Lepidoptera: Arctiidae). J Invertebr Pathol 12: 141–143

    Article  Google Scholar 

  24. Lipa JJ, Aldebis HK, Vargas-Osuna E, Caballero P, Santiago-Alvarez C, Hernandez-Crespo P (1994) Occurrence, biological activity, and host range of entomopoxvirus B from Ocnogyna baetica (Lepidoptera: Arctiidae). J Invertebr Pathol 63: 130–134

    Article  Google Scholar 

  25. Palli SR, Ladd TR, Tomkins WL, Shu S, Ramaswamy SB, Tanaka Y, Arif B, Retnakaran A (2000) Choristoneura fumiferana entomopoxvirus prevents metamorphosis and modulates juvenile hormone and ecdysteroid titers. Insect Biochem Mol Biol 30: 869–876

    Article  PubMed  CAS  Google Scholar 

  26. Nakai M, Shiotsuki T, Kunimi Y (2004) An entomopoxvirus and a granulovirus use different mechanisms to prevent pupation of Adoxophyes honmai. Virus Res 101: 185–191

    Article  PubMed  CAS  Google Scholar 

  27. Streett DA, Oma EA, Henry JE (1990) Cross infection of three grasshopper species with the Melanoplus sanguinipes entomopoxvirus. J Invertebr Pathol 56: 419–421

    Article  Google Scholar 

  28. Levin DB, Adachi D, Williams LL, Myles TG (1993) Host specificity and molecular characterization of the entomopoxvirus of the lesser migratory grasshopper, Melanoplus sanguinipes. J Invertebr Pathol 62: 241–247

    Article  CAS  Google Scholar 

  29. Bilimoria SL, Arif BM (1979) Subunit protein and alkaline protease of entomopoxvirus spheroids. Virology 96: 596–603

    Article  PubMed  CAS  Google Scholar 

  30. Hall RL, Moyer RW (1991) Identification, cloning, and sequencing of a fragment of Amsacta moorei entomopoxvirus DNA containing the spheroidin gene and three vaccinia virus-related open reading frames. J Virol 65: 6516–6527

    PubMed  CAS  Google Scholar 

  31. Hernandez-Crespo P, Veyrunes JC, Cousserans F, Bergoin M (2000) The spheroidin of an entomopoxvirus isolated from the grasshopper Anacridium aegyptium (AaEPV) shares low homology with spheroidins from lepidopteran or coleopteran EPVs. Virus Res 67: 203–213

    Article  PubMed  CAS  Google Scholar 

  32. Mitsuhashi W, Saito H, Sato M, Nakashima N, Noda H (1998) Complete nucleotide sequence of spheroidin gene of Anomala cuprea entomopoxvirus. Virus Res 55: 61–69

    Article  PubMed  CAS  Google Scholar 

  33. Li X, Barrett JW, Yuen L, Arif BM (1997) Cloning, sequencing and transcriptional analysis of the Choristoneura fumiferana entomopoxvirus spheroidin gene. Virus Res 47: 143–154

    Article  PubMed  CAS  Google Scholar 

  34. Palmer CP, Miller DP, Marlow SA, Wilson LE, Lawrie AM, King LA (1995) Genetic modification of an entomopoxvirus: deletion of the spheroidin gene does not affect virus replication in vitro. J Gen Virol 76: 15–23

    Article  PubMed  CAS  Google Scholar 

  35. Hall RL, Li Y, Feller J, Moyer RW (1996) The Amsacta moorei entomopoxvirus spheroidin gene is improperly transcribed in vertebrate poxviruses. Virology 224: 427–436

    Article  PubMed  CAS  Google Scholar 

  36. Langridge WH (1983) Detection of Amsacta moorei entomopoxvirus and vaccinia virus proteins in cell cultures restrictive for poxvirus multiplication. J Invertebr Pathol 42: 77–82

    Article  PubMed  CAS  Google Scholar 

  37. Granados RR, Roberts DW (1970) Electron microscopy of a poxlike virus infecting an invertebrate host. Virology 40: 230–243

    Article  PubMed  CAS  Google Scholar 

  38. Marlow SA, Wilson LE, Lawrie AM, Wilkinson N, King LA (1998) Assembly of Amsacta moorei entomopoxvirus spheroidin into spheroids following synthesis in insect cells using a baculovirus vector. J Gen Virol 79: 623–628

    PubMed  CAS  Google Scholar 

  39. McCarthy WJ, Granados RR, Sutter GR, Roberts DW (1975) Characterization of entomopox virions of the army cutworm, Euxoa auxiliaries (Lepidoptera: Noctuidae). J Invertebr Pathol 25: 215–220

    Article  PubMed  CAS  Google Scholar 

  40. Langridge WHR, Roberts DW (1982) Structural proteins of Amsacta moorei, Euxoa auxiliaries, and Melanoplus sanguinipes entomopoxviruses. J Invertebr Pathol 39: 346–353

    Article  CAS  Google Scholar 

  41. Erlandson M (1991) Protease activity associated with occlusion body preparations of an entomopoxvirus from Melanoplus sanguinipes. J Invertebr Pathol 57: 255–263

    Article  CAS  Google Scholar 

  42. Arif BM, Kurstak E (1991) The Entomopoxviruses. In: E Kurstak (ed): Viruses of Invertebrates. Marcel Dekker, New York, 179–195

    Google Scholar 

  43. Xu J, Hukuhara T (1994) Biochemical properties of an enhancing factor of an entomopoxvirus. J Invertebr Pathol 63: 14–18

    Article  CAS  Google Scholar 

  44. Mitsuhashi W, Saito H, Sato M (1997) Complete nucleotide sequence of the fusolin gene of an entomopoxvirus in the cupreous chafer, Anomala cuprea Hope (Coleoptera: Scarabaeidae). Insect Biochem Mol Biol 27: 869–876

    Article  PubMed  CAS  Google Scholar 

  45. Xu J, Hukuhara T (1992) Enhanced infection of a nuclear polyhedrosis virus in larvae of the armyworm, Pseudaletia separate, by a factor in the spheroids of an entomopoxvirus. J Invertebr Pathol 60: 259–264

    Article  Google Scholar 

  46. Hukuhara T, Wijonarko A (2001) Enhanced fusion of a nucleopolyhedrovirus with cultured cells by a virus enhancing factor from an entomopoxvirus. J Invertebr Pathol 77: 62–67

    Article  PubMed  CAS  Google Scholar 

  47. Hukuhara T, Hayakawa T, Wijonarko A (2001) A bacterially produced virus enhancing factor from an entomopoxvirus enhances nucleopolyhedrovirus infection in armyworm larvae. J Invertebr Pathol 78: 25–30

    Article  PubMed  CAS  Google Scholar 

  48. Furuta Y, Mitsuhashi W, Kobayashi J, Hayasaka S, Imanishi S, Chinzei Y, Sato M (2001) Peroral infectivity of non-occluded viruses of Bombyx mori nucleopolyhedrovirus and polyhedrin-negative recombinant baculoviruses to silkworm larvae is drastically enhanced when administered with Anomala cuprea entomopoxvirus spindles. J Gen Virol 82: 307–312

    PubMed  CAS  Google Scholar 

  49. Mitsuhashi W, Miyamoto K (2003) Disintegration of the peritrophic membrane of silkworm larvae due to spindles of an entomopoxvirus. J Invertebr Pathol 82: 34–40

    Article  PubMed  CAS  Google Scholar 

  50. Mitsuhashi W (2002) Further evidence that spindles of an entomopoxvirus enhance its infectivity in a host insect. J Invertebr Pathol 79: 59–61

    Article  PubMed  Google Scholar 

  51. Mitsuhashi W, Sato M, Hirai Y (2000) Involvement of spindles of an entomopoxvirus (EPV) in infectivity of the EPVs to their host insect-Brief report. Arch Virol 145: 1465–1471

    Article  PubMed  CAS  Google Scholar 

  52. Li Y, Hall RL, Yuan SL, Moyer RW (1998) High-level expression of Amsacta moorei entomopoxvirus spheroidin depends on sequences within the gene. J Gen Virol 79: 613–622

    PubMed  CAS  Google Scholar 

  53. Langridge WHR (1983) Virus DNA replication and protein synthesis in Amsacta moorei entomopoxvirus-infected Estigmene acrea cells. J Invertebr Pathol 41: 341–349

    Article  CAS  Google Scholar 

  54. Li Y, Hall RL, Moyer RW (1997) Transient, nonlethal expression of genes in vertebrate cells by recombinant entomopoxviruses. J Virol 71: 9557–9562

    PubMed  CAS  Google Scholar 

  55. Li Y, Yuan S, Moyer RW (1998) The non-permissive infection of insect (gypsy moth) LD-652 cells by Vaccinia virus. Virology 248: 74–82

    Article  PubMed  CAS  Google Scholar 

  56. Moss B (2001) Poxviridae: The Viruses and Their Replication. In: DM Knipe, PM Howley (eds): Fields Virology. Lippincott Williams & Wilkins, Philadelphia, 2849–2883

    Google Scholar 

  57. Becker MN, Greenleaf WB, Ostrov DA, Moyer RW (2004) Amsacta moorei entomopoxvirus expresses an active superoxide dismutase. J Virol 78: 10265–10275

    Article  PubMed  CAS  Google Scholar 

  58. Gruidl ME, Hall RL, Moyer RW (1992) Mapping and molecular characterization of a functional thymidine kinase from Amsacta moorei entomopoxvirus. Virology 186: 507–516

    Article  PubMed  CAS  Google Scholar 

  59. Krogh BO, Cheng CH, Burgin A, Shuman S (1999) Melanoplus sanguinipes entomopoxvirus DNA topoisomerase: Site-specific DNA transesterification and effects of 5’-bridging phosphorothiolates. Virology 264: 441–451

    Article  PubMed  CAS  Google Scholar 

  60. Condit RC, Niles EG (2002) Regulation of viral transcription elongation and termination during vaccinia virus infection. Biochim Biophys Acta 1577: 325–336

    PubMed  CAS  Google Scholar 

  61. D’Costa SM, Antczak JB, Pickup DJ, Condit RC (2004) Post-transcription cleavage generates the 3’ end of F17R transcripts in vaccinia virus. Virology 319: 1–11

    Article  PubMed  CAS  Google Scholar 

  62. Patel DD, Pickup DJ (1987) Messenger RNAs of a strongly-expressed late gene of cowpox virus contain 5’-terminal poly(A) sequences. EMBO J 6: 3787–3794

    PubMed  CAS  Google Scholar 

  63. Guarino LA, Xu B, Jin J, Dong W (1998) A virus-encoded RNA polymerase purified from baculovirus-infected cells. J Virol 72: 7985–7991

    PubMed  CAS  Google Scholar 

  64. Sanz P, Veyrunes JC, Cousserans F, Bergoin M (1994) Cloning and Sequencing of the spherulin gene, the occlusion body major polypeptide of the Melolontha melolontha entomopoxvirus (Mmepv). Virology 202: 449–457

    Article  PubMed  CAS  Google Scholar 

  65. Schnierle BS, Gershon PD, Moss B (1992) Cap-specific mRNA (nucleoside-O2’-)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein. Proc Natl Acad Sci USA 89: 2897–2901

    Article  PubMed  CAS  Google Scholar 

  66. Latner DR, Xiang Y, Lewis JI, Condit J, Condit RC (2000) The vaccinia virus bifunctional gene J3 (nucleoside-2’-O-)-methyltransferase and poly(A) polymerase stimulatory factor is implicated as a positive transcription elongation factor by two genetic approaches. Virology 269: 345–355

    Article  PubMed  CAS  Google Scholar 

  67. Xiang Y, Latner DR, Niles EG, Condit RC (2000) Transcription elongation activity of the vaccinia virus J3 protein in vivo is independent of poly(A) polymerase stimulation. Virology 269: 356–369

    Article  PubMed  CAS  Google Scholar 

  68. Lee P, Hruby DE (1993) Trans processing of vaccinia virus core proteins. J Virol 67: 4252–4263

    PubMed  CAS  Google Scholar 

  69. Sriskanda V, Moyer RW, Shuman S (2001) NAD+-dependent DNA ligase encoded by a eukaryotic virus. J Biol Chem 276: 36100–36109

    Article  PubMed  CAS  Google Scholar 

  70. Lu J, Tong J, Feng H, Huang JM, Afonso CL, Rock DL, Barany F, Cao WG (2004) Unique ligation properties of eukaryotic NAD(+)-dependent DNA ligase from Melanoplus sanguinipes entomopoxvirus. Biochim Biophys Acta 1701: 37–48

    PubMed  CAS  Google Scholar 

  71. Johnston JB, McFadden G (2003) Poxvirus immunomodulatory strategies: current perspectives. J Virol 77: 6093–6100

    Article  PubMed  CAS  Google Scholar 

  72. Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H, Cameron C, Sypula J, Nazarian SH, Lucas A, McFadden G (2003) Poxviruses and immune evasion. Annu Rev Immunol 21: 377–423

    Article  PubMed  CAS  Google Scholar 

  73. Li Q, Liston P, Schokman N, Ho JM, Moyer RW (2005) Amsacta moorei Entomopoxvirus inhibitor of apoptosis suppresses cell death by binding Grim and Hid. J Virol 79: 3684–3691

    Article  PubMed  CAS  Google Scholar 

  74. Li Q, Liston P, Moyer RW (2005) Functional analysis of the inhibitor of apoptosis (iap) gene carried by the entomopoxvirus of Amsacta moorei. J Virol 79: 2335–2345

    Article  PubMed  CAS  Google Scholar 

  75. King LA, Wilkinson N, Miller DP, Marlow SA (1998) Entomopoxviruses. In: LK Miller, LA Ball (eds): The Insect Viruses. Plenum Publishing, New York, 1–29

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Becker, M.N., Moyer, R.W. (2007). Subfamily Entomopoxvirinae . In: Mercer, A.A., Schmidt, A., Weber, O. (eds) Poxviruses. Birkhäuser Advances in Infectious Diseases. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7557-7_12

Download citation

Publish with us

Policies and ethics