Skip to main content
Book cover

Poxviruses pp 217–251Cite as

Genus Avipoxvirus

  • Chapter

Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)

Abstract

Poxviruses identified in skin lesions of domestic, pet or wild birds are assigned largely by default to the Avipoxvirus genus within the subfamily Chordopoxvirinae of the family Poxviridae. Avipoxviruses have been identified as the causative agent of disease in at least 232 species in 23 orders of birds. Vaccines based upon attenuated avipoxvirus strains provide good disease control in production poultry, although with the large and intensive production systems there are suggestions and real risks of emergence of strains against which current vaccines might be ineffective. Sequence analysis of the whole genome has revealed overall genome structure and function resemblance to the Chordopoxvirinae; however, avipoxvirus genomes exhibit large-scale genomic rearrangements with more extensive gene families and novel host range gene in comparison with the other Chordopoxvirinae. Phylogenetic analysis places the avipoxviruses externally to the Chorodopoxvirinae to such an extent that in the future it might be appropriate to consider the Avipoxviruses as a separate subfamily within the Poxviridae. A unique relationship exists between Fowlpox virus (FWPV) and reticuloendothelosis viruses. All FWPV strains carry a remnant long terminal repeat, while field strains carry a near full-length provirus integrated at the same location in the FWPV genome. With the development of techniques to construct poxviruses expressing foreign vaccine antigens, the avipoxviruses have gone from neglected obscurity to important vaccine vectors in the past 20 years. The seminal observation of their utility for delivery of vaccine antigens to non-avian species has driven much of the interest in this group of viruses. In the veterinary area, several recombinant avipoxviruses are commercially licensed vaccines. The most successful have been those expressing glycoprotein antigens of enveloped viruses, e.g. avian influenza, Newcastle diseases and West Nile viruses. Several recombinants have undergone extensive human clinical trials as experimental vaccines against HIV/AIDS and malaria or as treatment regimens in cancer patients. The safety profile of avipoxvirus recombinants for use as veterinary and human vaccines or therapeutics is now well established.

Keywords

  • Long Terminal Repeat
  • Avian Influenza
  • Newcastle Disease Virus
  • Infectious Bronchitis Virus
  • Highly Pathogenic Avian Influenza

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (2000) Virus taxonomy: The Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, New York

    Google Scholar 

  2. Afonso CL, Tulman ER, Lu Z, Zsak L, Kutish GF, Rock DL (2000) The genome of fowlpox virus. J Virol 74: 3815–3831

    PubMed  CAS  CrossRef  Google Scholar 

  3. Laidlaw SM, Skinner MA (2004) Comparison of the genome sequence of FP9, an attenuated, tissue culture-adapted European strain of Fowlpox virus, with those of virulent American and European viruses. J Gen Virol 85: 305–322

    PubMed  CAS  CrossRef  Google Scholar 

  4. Tulman ER, Afonso CL, Lu Z, Zsak L, Kutish GF, Rock DL (2004) The genome of canarypox virus. J Virol 78: 353–366

    PubMed  CAS  CrossRef  Google Scholar 

  5. Skinner MA, Laidlaw SM, Eldaghayes I, Kaiser P, Cottingham MG (2005) Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev Vaccines 4: 63–76

    PubMed  CAS  CrossRef  Google Scholar 

  6. Bolte AL, Meurer J, Kaleta EF (1999) Avian host spectrum of avipoxviruses. Avian Pathol 28: 415–432

    CrossRef  Google Scholar 

  7. Hertig C, Coupar BE, Gould AR, Boyle DB (1997) Field and vaccine strains of fowlpox virus carry integrated sequences from the avian retrovirus, reticuloendotheliosis virus. Virology 235: 367–376

    PubMed  CAS  CrossRef  Google Scholar 

  8. Webster RG, Taylor J, Pearson J, Rivera E, Paoletti E (1996) Immunity to Mexican H5N2 avian influenza viruses induced by a fowl pox-H5 recombinant. Avian Dis 40: 461–465

    PubMed  CAS  CrossRef  Google Scholar 

  9. Swayne DE, Beck JR, Mickle TR (1997) Efficacy of recombinant fowl poxvirus vaccine in protecting chickens against a highly pathogenic Mexican-origin H5N2 avian influenza virus. Avian Dis 41: 910–922

    PubMed  CAS  CrossRef  Google Scholar 

  10. Taylor J, Weinberg R, Languet B, Desmettre P, Paoletti E (1988) Recombinant fowlpox virus inducing protective immunity in non-avian species. Vaccine 6: 497–503

    PubMed  CAS  CrossRef  Google Scholar 

  11. Ramsay AJ, Leong KH, Ramshaw IA (1997) DNA vaccination against virus infection and enhancement of antiviral immunity following consecutive immunization with DNA and viral vectors. Immunol Cell Biol 75: 382–388

    PubMed  CAS  Google Scholar 

  12. Leong KH, Ramsay AJ, Boyle DB, Ramshaw IA (1994) Selective induction of immune responses by cytokines coexpressed in recombinant fowlpox virus. J Virol 68: 8125–8130

    PubMed  CAS  Google Scholar 

  13. Kent SJ, Zhao A, Best SJ, Chandler JD, Boyle DB, Ramshaw IA (1998) Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J Virol 72: 10180–10188

    PubMed  CAS  Google Scholar 

  14. Moorthy VS, Imoukhuede EB, Keating S, Pinder M, Webster D, Skinner MA, Gilbert SC, Walraven G, Hill AV (2004) Phase 1 evaluation of 3_highly immunogenic prime-boost regimens, including a 12-month reboosting vaccination, for malaria vaccination in Gambian men. J Infect Dis 189: 2213–2219

    PubMed  CAS  CrossRef  Google Scholar 

  15. Tubiana R, Gomard E, Fleury H, Gougeon ML, Mouthon B, Picolet H, Katlama C (1997) Vaccine therapy in early HIV-1 infection using a recombinant canarypox virus expressing gp160MN (ALVAC-HIV): a double-blind controlled randomized study of safety and immunogenicity. AIDS 11: 819–820

    PubMed  CAS  Google Scholar 

  16. Salmon-Ceron D, Excler JL, Finkielsztejn L, Autran B, Gluckman JC, Sicard D, Matthews TJ, Meignier B, Valentin C, El Habib R et al (1999) Safety and immunogenicity of a live recombinant canarypox virus expressing HIV type 1 gp120 MN MN tm/gag/protease LAI (ALVAC-HIV, vCP205) followed by a p24E-V3 MN synthetic peptide (CLTB-36) administered in healthy volunteers at low risk for HIV infection. AGIS Group and L’Agence Nationale de Recherches sur Le Sida. AIDS Res Hum Retroviruses 15: 633–645

    PubMed  CAS  CrossRef  Google Scholar 

  17. Mayo MA, Maniloff J, Desselberger U, Ball LA, Fauquet CM (2004) Virus Taxonomy: VIIIth Report of the International Committee on Taxonomy of Viruses. Academic Press, New York

    Google Scholar 

  18. Luschow D, Hoffmann T, Hafez HM (2004) Differentiation of avian poxvirus strains on the basis of nucleotide sequences of 4b gene fragment. Avian Dis 48: 453–462

    PubMed  CAS  CrossRef  Google Scholar 

  19. Weli SC, Traavik T, Tryland M, Coucheron DH, Nilssen O (2004) Analysis and comparison of the 4b core protein gene of avipoxviruses from wild birds: evidence for interspecies spatial phylogenetic variation. Arch Virol 149: 2035–2046

    PubMed  CAS  Google Scholar 

  20. McLysaght A, Baldi PF, Gaut BS (2003) Extensive gene gain associated with adaptive evolution of poxviruses. Proc Natl Acad Sci USA 100: 15655–15660

    PubMed  CAS  CrossRef  Google Scholar 

  21. Hughes AL, Friedman R (2005) Poxvirus genome evolution by gene gain and loss. Mol Phylogenet Evol 35: 186–195

    PubMed  CAS  CrossRef  Google Scholar 

  22. Beaudette FR (1949) Twenty years of progress in immunization against virus diseases of birds. J Am Vet Med Assoc 115: 234–244

    Google Scholar 

  23. Tripathy DN (1993) Avipox viruses. In: JB McFerran, MS McNulty (eds): Virus infections of birds. Elsevier, London, 5–15

    Google Scholar 

  24. Tripathy DN (2004) Fowl Pox. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. OIE World Organisation for Animal Health, Paris

    Google Scholar 

  25. Walker MH, Rup BJ, Rubin AS, Bose HR Jr (1983) Specificity in the immunosuppression induced by avian reticuloendotheliosis virus. Infect Immun 40: 225–235

    PubMed  CAS  Google Scholar 

  26. Nagy E, Maeda-Machang’u AD, Krell PJ, Derbyshire JB (1990) Vaccination of 1-day-old chicks with fowlpox virus by the aerosol, drinking water, or cutaneous routes. Avian Dis 34: 677–682

    PubMed  CAS  CrossRef  Google Scholar 

  27. Deuter A, Southee DJ, Mockett AP (1991) Fowlpox virus: pathogenicity and vaccination of day-old chickens via the aerosol route. Res Vet Sci 50: 362–364

    PubMed  CAS  Google Scholar 

  28. Sharma JM, Zhang Y, Jensen D, Rautenschlein S, Yeh HY (2002) Field trial in commercial broilers with a multivalent in ovo vaccine comprising a mixture of live viral vaccines against Marek’s disease, infectious bursal disease, Newcastle disease, and fowl pox. Avian Dis 46: 613–622

    PubMed  CAS  CrossRef  Google Scholar 

  29. Gagic M, St Hill CA, Sharma JM (1999) In ovo vaccination of specific-pathogen-free chickens with vaccines containing multiple agents. Avian Dis 43: 293–301

    PubMed  CAS  CrossRef  Google Scholar 

  30. Tripathy DN, Hanson LE (1975) Immunity to fowlpox. Am J Vet Res 36: 541–544

    PubMed  CAS  Google Scholar 

  31. Morita C (1973) Role of humoral and cell-mediated immunity on the recovery of chickens from fowlpox virus infection. J Immunol 111: 1495–1501

    PubMed  CAS  Google Scholar 

  32. Isa G, Pfister K, Kaaden OR, Czerny CP (2002) Development of a monoclonal blocking ELISA for the detection of antibodies against fowlpox virus. J Vet Med B Infect Dis Vet Public Health 49: 21–23

    PubMed  CAS  Google Scholar 

  33. Davison F, Nair V (2005) Use of Marek’s disease vaccines: could they be driving the virus to increasing virulence? Expert Rev Vaccines 4: 77–88

    PubMed  CrossRef  Google Scholar 

  34. Singh P, Kim TJ, Tripathy DN (2000) Re-emerging fowlpox: evaluation of isolates from vaccinated flocks. Avian Pathol 29: 449–455

    CrossRef  Google Scholar 

  35. Fatunmbi OO, Reed WM (1996) Evaluation of a commercial quail pox vaccine (Bio-Pox Q) for the control of “variant” fowl poxvirus infections. Avian Dis 40: 792–797

    PubMed  CAS  CrossRef  Google Scholar 

  36. Fatunmbi OO, Reed WM (1996) Evaluation of a commercial modified live virus fowl pox vaccine for the control of “variant” fowl poxvirus infections. Avian Dis 40: 582–587

    PubMed  CAS  CrossRef  Google Scholar 

  37. Tripathy DN, Schnitzlein WM, Morris PJ, Janssen DL, Zuba JK, Massey G, Atkinson CT (2000) Characterization of poxviruses from forest birds in Hawaii. J Wildl Dis 36: 225–230

    PubMed  CAS  Google Scholar 

  38. Smits JE, Tella JL, Carrete M, Serrano D, Lopez G (2005) An epizootic of avian pox in endemic short-toed larks (Calandrella rufescens) and Berthelot’s pipits (Anthus berthelotti) in the Canary Islands, Spain. Vet Pathol 42: 59–65

    PubMed  CAS  CrossRef  Google Scholar 

  39. Kim TJ, Schnitzlein WM, McAloose D, Pessier AP, Tripathy DN (2003) Characterization of an avianpox virus isolated from an Andean condor (Vultur gryphus). Vet Microbiol 96: 237–246

    PubMed  CAS  CrossRef  Google Scholar 

  40. Ghildyal N, Schnitzlein WM, Tripathy DN (1989) Genetic and antigenic differences between fowlpox and quailpox viruses. Arch Virol 106: 85–92

    PubMed  CAS  CrossRef  Google Scholar 

  41. Schnitzlein WM, Ghildyal N, Tripathy DN (1988) Genomic and antigenic characterization of avipoxviruses. Virus Res 10: 65–75

    PubMed  CAS  CrossRef  Google Scholar 

  42. Shivaprasad HL, Kim TJ, Woolcock PR, Tripathy DN (2002) Genetic and antigenic characterization of a poxvirus isolate from ostriches. Avian Dis 46: 429–436

    PubMed  CAS  CrossRef  Google Scholar 

  43. Kirmse P (1967) Host specificity and long persistence of pox infection in the flicker (Colaptes auratus). Bull Wildlife Dis Assoc 3: 14–20

    Google Scholar 

  44. Amano H, Morikawa S, Shimizu H, Shoji I, Kurosawa D, Matsuura Y, Miyamura T, Ueda Y (1999) Identification of the canarypox virus thymidine kinase gene and insertion of foreign genes. Virology 256: 280–290

    PubMed  CAS  CrossRef  Google Scholar 

  45. Garcia M, Narang N, Reed WM, Fadly AM (2003) Molecular characterization of reticuloendotheliosis virus insertions in the genome of field and vaccine strains of fowl poxvirus. Avian Dis 47: 343–354

    PubMed  CrossRef  Google Scholar 

  46. Kim TJ, Tripathy DN (2001) Reticuloendotheliosis virus integration in the fowl poxvirus genome: not a recent event. Avian Dis 45: 663–669

    PubMed  CAS  CrossRef  Google Scholar 

  47. Moore KM, Davis JR, Sato T, Yasuda A (2000) Reticuloendotheliosis virus (REV) long terminal repeats incorporated in the genomes of commercial fowl poxvirus vaccines and pigeon poxviruses without indication of the presence of infectious REV. Avian Dis 44: 827–841

    PubMed  CAS  CrossRef  Google Scholar 

  48. Singh P, Schnitzlein WM, Tripathy DN (2003) Reticuloendotheliosis virus sequences within the genomes of field strains of fowlpox virus display variability. J Virol 77: 5855–5862

    PubMed  CAS  CrossRef  Google Scholar 

  49. Tadese T, Reed WM (2003) Detection of specific reticuloendotheliosis virus sequence and protein from REV-integrated fowlpox virus strains. J Virol Methods 110: 99–104

    PubMed  CAS  CrossRef  Google Scholar 

  50. Ball LA (1987) High-frequency homologous recombination in vaccinia virus DNA. J Virol 61: 1788–1795

    PubMed  CAS  Google Scholar 

  51. Kriajevska MV, Zakharova LG, Altstein AD (1994) Genetic instability of vaccinia virus containing artificially duplicated genome regions. Virus Res 31: 123–137

    PubMed  CAS  CrossRef  Google Scholar 

  52. Falkner FG, Moss B (1990) Transient dominant selection of recombinant vaccinia viruses. J Virol 64: 3108–3111

    PubMed  CAS  Google Scholar 

  53. Boyle DB, Anderson MA, Amos R, Voysey R, Coupar BE (2004) Construction of recombinant fowlpox viruses carrying multiple vaccine antigens and immunomodulatory molecules. Biotechniques 37: 104–111

    PubMed  CAS  Google Scholar 

  54. Isfort RJ, Qian Z, Jones D, Silva RF, Witter R, Kung HJ (1994) Integration of multiple chicken retroviruses into multiple chicken herpesviruses: herpesviral gD as a common target of integration. Virology 203: 125–133

    PubMed  CAS  CrossRef  Google Scholar 

  55. Fadly AM, Witter RL (1997) Comparative evaluation of in vitro and in vivo assays for the detection of reticuloendotheliosis virus as a contaminant in a live virus vaccine of poultry. Avian Dis 41: 695–701

    PubMed  CAS  CrossRef  Google Scholar 

  56. Panicali D, Davis SW, Weinberg RL, Paoletti E (1983) Construction of live vaccines by using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc Natl Acad Sci USA 80: 5364–5368

    PubMed  CAS  CrossRef  Google Scholar 

  57. Mackett M, Smith GL, Moss B (1982) Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci USA 79: 7415–7419

    PubMed  CAS  CrossRef  Google Scholar 

  58. Boyle DB, Coupar BE (1988) Construction of recombinant fowlpox viruses as vectors for poultry vaccines. Virus Res 10: 343–356

    PubMed  CAS  CrossRef  Google Scholar 

  59. Taylor J, Weinberg R, Kawaoka Y, Webster RG, Paoletti E (1988) Protective immunity against avian influenza induced by a fowlpox virus recombinant. Vaccine 6: 504–508

    PubMed  CAS  CrossRef  Google Scholar 

  60. Taylor J, Paoletti E (1988) Fowlpox virus as a vector in non-avian species. Vaccine 6: 466–468

    PubMed  CAS  CrossRef  Google Scholar 

  61. Taylor J, Meignier B, Tartaglia J, Languet B, VanderHoeven J, Franchini G, Trimarchi C, Paoletti E (1995) Biological and immunogenic properties of a canarypox-rabies recombinant, ALVAC-RG (vCP65) in non-avian species. Vaccine 13: 539–549

    PubMed  CAS  CrossRef  Google Scholar 

  62. Baxby D, Paoletti E (1992) Potential use of non-replicating vectors as recombinant vaccines. Vaccine 10: 8–9

    PubMed  CAS  CrossRef  Google Scholar 

  63. Nelson JB (1941) The behaviour of poxviruses in the respiratory tract. IV. The nasal instillation of fowl pox virus in chickens and mice. J Exp Med 74: 203–211

    CrossRef  Google Scholar 

  64. Burnett JW, Frothingham TE (1968) The cytotoxic effect of fowlpox virus on primary human amniotic cell cultures. Arch Gesamte Virusforsch 24: 137–147

    PubMed  CAS  CrossRef  Google Scholar 

  65. Somogyi P, Frazier J, Skinner MA (1993) Fowlpox virus host range restriction: gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells. Virology 197: 439–444

    PubMed  CAS  CrossRef  Google Scholar 

  66. Stannard LM, Marais D, Kow D, Dumbell KR (1998) Evidence for incomplete replication of a penguin poxvirus in cells of mammalian origin. J Gen Virol 79: 1637–1646

    PubMed  CAS  Google Scholar 

  67. Weli SC, Nilssen O, Traavik T (2004) Morphogenesis of fowlpox virus in a baby hamster kidney cell line. Med Electron Microsc 37: 225–235

    PubMed  CrossRef  Google Scholar 

  68. Webster DP, Dunachie S, Vuola JM, Berthoud T, Keating S, Laidlaw SM, McConkey SJ, Poulton I, Andrews L, Andersen RF et al (2005) Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc Natl Acad Sci USA 102: 4836–4841

    PubMed  CAS  CrossRef  Google Scholar 

  69. De Rose R, Chea S, Dale CJ, Reece J, Fernandez CS, Wilson KM, Thomson S, Ramshaw IA, Coupar BE, Boyle DB et al (2005) Subtype AE HIV-1 DNA and recombinant Fowlpoxvirus vaccines encoding five shared HIV-1 genes: safety and T cell immunogenicity in macaques. Vaccine 23: 1949–1956

    PubMed  CrossRef  CAS  Google Scholar 

  70. Gilbert PB, Chiu YL, Allen M, Lawrence DN, Chapdu C, Israel H, Holman D, Keefer MC, Wolff M, Frey SE (2003) Long-term safety analysis of preventive HIV-1_vaccines evaluated in AIDS vaccine evaluation group NIAID-sponsored Phase I and II clinical trials. Vaccine 21: 2933–2947

    PubMed  CAS  CrossRef  Google Scholar 

  71. Moore AC, Hill AV (2004) Progress in DNA-based heterologous prime-boost immunization strategies for malaria. Immunol Rev 199: 126–143

    PubMed  CAS  CrossRef  Google Scholar 

  72. Coupar BE, Andrew ME, Both GW, Boyle DB (1986) Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. Eur J Immunol 16: 1479–1487

    PubMed  CAS  Google Scholar 

  73. Prideaux CT, Boyle DB (1987) Fowlpox virus polypeptides: sequential appearance and virion associated polypeptides. Arch Virol 96: 185–199

    PubMed  CAS  CrossRef  Google Scholar 

  74. Townsend A, Bastin J, Gould K, Brownlee G, Andrew M, Coupar B, Boyle D, Chan S, Smith G (1988) Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen. J Exp Med 168: 1211–1224

    PubMed  CAS  CrossRef  Google Scholar 

  75. Niikura M, Narita T, Mikami T (1991) Establishment and characterization of a thymidine kinase deficient avian fibroblast cell line derived from a Japanese quail cell line, QT35. J Vet Med Sci 53: 439–446

    PubMed  CAS  Google Scholar 

  76. Cowen BS, Braune MO (1988) The propagation of avian viruses in a continuous cell line (QT35) of Japanese quail origin. Avian Dis 32: 282–297

    PubMed  CAS  CrossRef  Google Scholar 

  77. Prideaux CT, Boyle DB (1987) Fowlpox virus polypeptides: sequential appearance and virion associated polypeptides. Arch Virol 96: 185–199

    PubMed  CAS  CrossRef  Google Scholar 

  78. Prideaux CT, Kumar S, Boyle DB (1990) Comparative analysis of vaccinia virus promoter activity in fowlpox and vaccinia virus recombinants. Virus Res 16: 43–57

    PubMed  CAS  CrossRef  Google Scholar 

  79. Boyle DB (1992) Quantitative assessment of poxvirus promoters in fowlpox and vaccinia virus recombinants. Virus Genes 6: 281–290

    PubMed  CAS  CrossRef  Google Scholar 

  80. Srinivasan V, Schnitzlein WM, Tripathy DN (2003) A consideration of previously uncharacterized fowl poxvirus unidirectional and bidirectional late promoters for inclusion in homologous recombinant vaccines. Avian Dis 47: 286–295

    PubMed  CAS  CrossRef  Google Scholar 

  81. Dhawale S, Beisel CE, Nazerian K (1990) Transient expression assay for qualitative assessment of gene expression by fowlpox virus. Virus Genes 3: 213–220

    PubMed  CAS  CrossRef  Google Scholar 

  82. Kumar S, Boyle DB (1990) Activity of a fowlpox virus late gene promoter in vaccinia and fowlpox virus recombinants. Arch Virol 112: 139–148

    PubMed  CAS  CrossRef  Google Scholar 

  83. Vazquez-Blomquist D, Gonzalez S, Duarte CA (2002) Effect of promoters on cellular immune response induced by recombinant fowlpox virus expressing multi-epitope polypeptides from HIV-1. Biotechnol Appl Biochem 36: 171–179

    PubMed  CAS  CrossRef  Google Scholar 

  84. Coupar BE, Teo T, Boyle DB (1990) Restriction endonuclease mapping of the fowlpox virus genome. Virology 179: 159–167

    PubMed  CAS  CrossRef  Google Scholar 

  85. Boulanger D, Baier R, Erfle V, Sutter G (2002) Generation of recombinant fowlpox virus using the non-essential F11L orthologue as insertion site and a rapid transient selection strategy. J Virol Methods 106: 141–151

    PubMed  CAS  CrossRef  Google Scholar 

  86. Boursnell ME, Green PF, Campbell JI, Deuter A, Peters RW, Tomley FM, Samson AC, Emmerson PT, Binns MM (1990) A fowlpox virus vaccine vector with insertion sites in the terminal repeats: demonstration of its efficacy using the fusion gene of Newcastle disease virus. Vet Microbiol 23: 305–316

    PubMed  CAS  CrossRef  Google Scholar 

  87. Spehner D, Drillien R, Lecocq JP (1990) Construction of fowlpox virus vectors with intergenic insertions: expression of the beta-galactosidase gene and the measles virus fusion gene. J Virol 64: 527–533

    PubMed  CAS  Google Scholar 

  88. Scheiflinger F, Falkner FG, Dorner F (1997) Role of the fowlpox virus thymidine kinase gene for the growth of FPV recombinants in cell culture. Arch Virol 142: 2421–2431

    PubMed  CAS  CrossRef  Google Scholar 

  89. Nazerian K, Dhawale S (1991) Structural analysis of unstable intermediate and stable forms of recombinant fowlpox virus. J Gen Virol 72: 2791–2795

    PubMed  CAS  Google Scholar 

  90. Letellier C (1993) Role of the TK+ phenotype in the stability of pigeonpox virus recombinant. Arch Virol 131: 431–439

    PubMed  CAS  CrossRef  Google Scholar 

  91. Coupar BEH, Purcell DFJ, Thomson SA, Ramshaw IA, Kent SJ, Boyle DB (2006) Fowlpox virus vaccines for HIV and SHIV clinical and pre-clinical trials. Vaccine 24: 1378–1388

    PubMed  CAS  CrossRef  Google Scholar 

  92. Domi A, Moss B (2002) Cloning the vaccinia virus genome as a bacterial artificial chromosome in Escherichia coli and recovery of infectious virus in mammalian cells. Proc Natl Acad Sci USA 99: 12415–12420

    PubMed  CAS  CrossRef  Google Scholar 

  93. Domi A, Moss B (2005) Engineering of a vaccinia virus bacterial artificial chromosome in Escherichia coli by bacteriophage lambda-based recombination. Nat Methods 2: 95–97

    PubMed  CAS  CrossRef  Google Scholar 

  94. Hanafusa H, Hanafusa H, Kamahora J (1959) Transformation phenomena in the pox group virus. II. Transformation between several members of pox group. Biken J 2: 85–91

    Google Scholar 

  95. Joklik WK, Woodroofe GM, Holmes IH, Fenner F (1960) The reactivation of poxviruses. I.Demonstration of the phenomenon and techniques of assay. Virology 11: 168–184

    CAS  Google Scholar 

  96. Harley VR, Hudson PJ, Coupar BE, Selleck PW, Westbury H, Boyle DB (1990) Vaccinia virus expression and sequence of an avian influenza nucleoprotein gene: potential use in diagnosis. Arch Virol 113: 133–141

    PubMed  CAS  CrossRef  Google Scholar 

  97. Scheiflinger F, Dorner F, Falkner FG (1992) Construction of chimeric vaccinia viruses by molecular cloning and packaging. Proc Natl Acad Sci USA 89: 9977–9981

    PubMed  CAS  CrossRef  Google Scholar 

  98. Fuerst TR, Niles EG, Studier FW, Moss B (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 83: 8122–8126

    PubMed  CAS  CrossRef  Google Scholar 

  99. Das SC, Baron MD, Barrett T (2000) Recovery and characterization of a chimeric rinderpest virus with the glycoproteins of peste-des-petits-ruminants virus: homologous F and H proteins are required for virus viability. J Virol 74: 9039–9047

    PubMed  CAS  CrossRef  Google Scholar 

  100. Casais R, Thiel V, Siddell SG, Cavanagh D, Britton P (2001) Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75: 12359–12369

    PubMed  CAS  CrossRef  Google Scholar 

  101. Britton P, Green P, Kottier S, Mawditt KL, Penzes Z, Cavanagh D, Skinner MA (1996) Expression of bacteriophage T7 RNA polymerase in avian and mammalian cells by a recombinant fowlpox virus. J Gen Virol 77: 963–967

    PubMed  CAS  CrossRef  Google Scholar 

  102. Das SC, Baron MD, Skinner MA, Barrett T (2000) Improved technique for transient expression and negative strand virus rescue using fowlpox T7 recombinant virus in mammalian cells. J Virol Methods 89: 119–127

    PubMed  CAS  CrossRef  Google Scholar 

  103. Evans S, Cavanagh D, Britton P (2000) Utilizing fowlpox virus recombinants to generate defective RNAs of the coronavirus infectious bronchitis virus. J Gen Virol 81: 2855–2865

    PubMed  CAS  Google Scholar 

  104. Boyle DB, Selleck P, Heine HG (2000) Vaccinating chickens against avian influenza with fowlpox recombinants expressing the H7 haemagglutinin. Aust Vet J 78: 44–48

    PubMed  CAS  Google Scholar 

  105. Webster RG, Kawaoka Y, Taylor J, Weinberg R, Paoletti E (1991) Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens. Vaccine 9: 303–308

    PubMed  CAS  CrossRef  Google Scholar 

  106. Swayne DE (2003) Vaccines for List A poultry diseases: emphasis on avian influenza. Dev Biol 114: 201–212

    CAS  Google Scholar 

  107. Qiao CL, Yu KZ, Jiang YP, Jia YQ, Tian GB, Liu M, Deng GH, Wang XR, Meng QW, Tang XY (2003) Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes. Avian Pathol 32: 25–32

    PubMed  CAS  CrossRef  Google Scholar 

  108. Swayne DE, Garcia M, Beck JR, Kinney N, Suarez DL (2000) Protection against diverse highly pathogenic H5 avian influenza viruses in chickens immunized with a recombinant fowlpox vaccine containing an H5 avian influenza hemagglutinin gene insert. Vaccine 18: 1088–1095

    PubMed  CAS  CrossRef  Google Scholar 

  109. Swayne DE, Beck JR, Kinney N (2000) Failure of a recombinant fowl poxvirus vaccine containing an avian influenza hemagglutinin gene to provide consistent protection against influenza in chickens preimmunized with a fowl pox vaccine. Avian Dis 44: 132–137

    PubMed  CAS  CrossRef  Google Scholar 

  110. Swayne DE, Perdue ML, Beck JR, Garcia M, Suarez DL (2000) Vaccines protect chickens against H5 highly pathogenic avian influenza in the face of genetic changes in field viruses over multiple years. Vet Microbiol 74: 165–172

    PubMed  CAS  CrossRef  Google Scholar 

  111. Aldhous P, Tomlin S (2005) Avian flu special: Avian flu: Are we ready? Nature435: 399

    PubMed  CAS  CrossRef  Google Scholar 

  112. Boursnell ME, Green PF, Samson AC, Campbell JI, Deuter A, Peters RW, Millar NS, Emmerson PT, Binns MM (1990) A recombinant fowlpox virus expressing the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) protects chickens against challenge by NDV. Virology 178: 297–300

    PubMed  CAS  CrossRef  Google Scholar 

  113. Iritani Y, Aoyama S, Takigami S, Hayashi Y, Ogawa R, Yanagida N, Saeki S, Kamogawa K (1991) Antibody response to Newcastle disease virus (NDV) of recombinant fowlpox virus (FPV) expressing a hemagglutinin-neuraminidase of NDV into chickens in the presence of antibody to NDV or FPV. Avian Dis 35: 659–661

    PubMed  CAS  CrossRef  Google Scholar 

  114. Letellier C, Burny A, Meulemans G (1991) Construction of a pigeonpox virus recombinant: expression of the Newcastle disease virus (NDV) fusion glycoprotein and protection of chickens against NDV challenge. Arch Virol 118: 43–56

    PubMed  CAS  CrossRef  Google Scholar 

  115. Edbauer C, Weinberg R, Taylor J, Rey-Senelonge A, Bouquet JF, Desmettre P, Paoletti E (1990) Protection of chickens with a recombinant fowlpox virus expressing the Newcastle disease virus hemagglutinin-neuraminidase gene. Virology 179: 901–904

    PubMed  CAS  CrossRef  Google Scholar 

  116. Ogawa R, Yanagida N, Saeki S, Saito S, Ohkawa S, Gotoh H, Kodama K, Kamogawa K, Sawaguchi K, Iritani Y (1990) Recombinant fowlpox viruses inducing protective immunity against Newcastle disease and fowlpox viruses. Vaccine 8: 486–490

    PubMed  CAS  CrossRef  Google Scholar 

  117. Taylor J, Christensen L, Gettig R, Goebel J, Bouquet JF, Mickle TR, Paoletti E (1996) Efficacy of a recombinant fowl pox-based Newcastle disease virus vaccine candidate against velogenic and respiratory challenge. Avian Dis 40: 173–180

    PubMed  CAS  CrossRef  Google Scholar 

  118. Taylor J, Edbauer C, Rey-Senelonge A, Bouquet JF, Norton E, Goebel S, Desmettre P, Paoletti E (1990) Newcastle disease virus fusion protein expressed in a fowlpox virus recombinant confers protection in chickens. J Virol 64: 1441–1450

    PubMed  CAS  Google Scholar 

  119. Nazerian K, Yanagida N (1995) A recombinant fowlpox virus expressing the envelope antigen of subgroup A avian leukosis/sarcoma virus. Avian Dis 39: 514–520

    PubMed  CAS  CrossRef  Google Scholar 

  120. Heine HG, Foord AJ, Young PL, Hooper PT, Lehrbach PR, Boyle DB (1997) Recombinant fowlpox virus vaccines against Australian virulent Marek’s disease virus: gene sequence analysis and comparison of vaccine efficacy in specific pathogen free and production chickens. Virus Res 50: 23–33

    PubMed  CAS  CrossRef  Google Scholar 

  121. Lee LF, Bacon LD, Yoshida S, Yanagida N, Zhang HM, Witter RL (2004) The efficacy of recombinant fowlpox vaccine protection against Marek’s disease: its dependence on chicken line and B haplotype. Avian Dis 48: 129–137

    PubMed  CrossRef  Google Scholar 

  122. Nazerian K, Lee LF, Yanagida N, Ogawa R (1992) Protection against Marek’s disease by a fowlpox virus recombinant expressing the glycoprotein B of Marek’s disease virus. J Virol 66: 1409–1413

    PubMed  CAS  Google Scholar 

  123. Omar AR, Schat KA, Lee LF, Hunt HD (1998) Cytotoxic T lymphocyte response in chickens immunized with a recombinant fowlpox virus expressing Marek’s disease herpesvirus glycoprotein B. Vet Immunol Immunopathol 62: 73–82

    PubMed  CAS  CrossRef  Google Scholar 

  124. Yanagida N, Ogawa R, Li Y, Lee LF, Nazerian K (1992) Recombinant fowlpox viruses expressing the glycoprotein B homolog and the pp38 gene of Marek’s disease virus. J Virol 66: 1402–1408

    PubMed  CAS  Google Scholar 

  125. Calvert JG, Nazerian K, Witter RL, Yanagida N (1993) Fowlpox virus recombinants expressing the envelope glycoprotein of an avian reticuloendotheliosis retrovirus induce neutralizing antibodies and reduce viremia in chickens. J Virol 67: 3069–3076

    PubMed  CAS  Google Scholar 

  126. Qingzhong Y, Barrett T, Brown TD, Cook JK, Green P, Skinner MA, Cavanagh D (1994) Protection against turkey rhinotracheitis pneumovirus (TRTV) induced by a fowlpox virus recombinant expressing the TRTV fusion glycoprotein (F). Vaccine 12: 569–573

    PubMed  CAS  CrossRef  Google Scholar 

  127. Butter C, Sturman TD, Baaten BJ, Davison TF (2003) Protection from infectious bursal disease virus (IBDV)-induced immunosuppression by immunization with a fowlpox recombinant containing IBDV-VP2. Avian Pathol 32: 597–604

    PubMed  CAS  CrossRef  Google Scholar 

  128. Shaw I, Davison TF (2000) Protection from IBDV-induced bursal damage by a recombinant fowlpox vaccine, fpIBD1, is dependent on the titre of challenge virus and chicken genotype. Vaccine 18: 3230–3241

    PubMed  CAS  CrossRef  Google Scholar 

  129. Boyle DB, Heine HG (1994) Influence of dose and route of inoculation on responses of chickens to recombinant fowlpox virus vaccines. Vet Microbiol 41: 173–181

    PubMed  CAS  CrossRef  Google Scholar 

  130. Heine HG, Boyle DB (1993) Infectious bursal disease virus structural protein VP2_expressed by a fowlpox virus recombinant confers protection against disease in chickens. Arch Virol 131: 277–292

    PubMed  CAS  CrossRef  Google Scholar 

  131. Cardona CJ, Reed WM, Witter RL, Silva RF (1999) Protection of turkeys from hemorrhagic enteritis with a recombinant fowl poxvirus expressing the native hexon of hemorrhagic enteritis virus. Avian Dis 43: 234–244

    PubMed  CAS  CrossRef  Google Scholar 

  132. Vermeulen AN (1998) Progress in recombinant vaccine development against coccidiosis. A review and prospects into the next millennium. Int J Parasitol 28: 1121–1130

    PubMed  CAS  CrossRef  Google Scholar 

  133. Wang X, Schnitzlein WM, Tripathy DN, Girshick T, Khan MI (2002) Construction and immunogenicity studies of recombinant fowl poxvirus containing the S1 gene of Massachusetts 41 strain of infectious bronchitis virus. Avian Dis 46: 831–838

    PubMed  CrossRef  Google Scholar 

  134. Boyle DB (1998) Diversified prime and boost protocols: the route to enhanced immune responses to recombinant DNA based vaccine? Aust Biotechnol 8: 96–98

    Google Scholar 

  135. Tsukamoto K, Sato T, Saito S, Tanimura N, Hamazaki N, Mase M, Yamaguchi S (2000) Dual-viral vector approach induced strong and long-lasting protective immunity against very virulent infectious bursal disease virus. Virology 269: 257–267

    PubMed  CAS  CrossRef  Google Scholar 

  136. Karaca K, Sharma JM, Winslow BJ, Junker DE, Reddy S, Cochran M, McMillen J (1998) Recombinant fowlpox viruses coexpressing chicken type I IFN and Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses. Vaccine 16: 1496–1503

    PubMed  CAS  CrossRef  Google Scholar 

  137. Djeraba A, Musset E, Lowenthal JW, Boyle DB, Chausse AM, Peloille M, Quere P (2002) Protective effect of avian myelomonocytic growth factor in infection with Marek’s disease virus. J Virol 76: 1062–1070

    PubMed  CAS  Google Scholar 

  138. York JJ, Strom AD, Connick TE, McWaters PG, Boyle DB, Lowenthal JW (1996) In vivo effects of chicken myelomonocytic growth factor: delivery via a viral vector. J Immunol 156: 2991–2997

    PubMed  CAS  Google Scholar 

  139. Taylor J, Trimarchi C, Weinberg R, Languet B, Guillemin F, Desmettre P, Paoletti E (1991) Efficacy studies on a canarypox-rabies recombinant virus. Vaccine 9: 190–193

    PubMed  CAS  CrossRef  Google Scholar 

  140. Taylor J, Tartaglia J, Riviere M, Duret C, Languet B, Chappuis G, Paoletti E (1994) Applications of canarypox (ALVAC) vectors in human and veterinary vaccination. Dev Biol Stand 82: 131–135

    PubMed  CAS  Google Scholar 

  141. Plotkin SA, Cadoz M, Meignier B, Meric C, Leroy O, Excler JL, Tartaglia J, Paoletti E, Gonczol E, Chappuis G (1995) The safety and use of canarypox vectored vaccines. Dev Biol Stand 84: 165–170

    PubMed  CAS  Google Scholar 

  142. Stephensen CB, Welter J, Thaker SR, Taylor J, Tartaglia J, Paoletti E (1997) Canine distemper virus (CDV) infection of ferrets as a model for testing Morbillivirus vaccine strategies: NYVAC-and ALVAC-based CDV recombinants protect against symptomatic infection. J Virol 71: 1506–1513

    PubMed  CAS  Google Scholar 

  143. Pardo MC, Bauman JE, Mackowiak M (1997) Protection of dogs against canine distemper by vaccination with a canarypox virus recombinant expressing canine distemper virus fusion and hemagglutinin glycoproteins. Am J Vet Res 58: 833–836

    PubMed  CAS  Google Scholar 

  144. Poulet H, Brunet S, Boularand C, Guiot AL, Leroy V, Tartaglia J, Minke J, Audonnet JC, Desmettre P (2003) Efficacy of a canarypox virus-vectored vaccine against feline leukaemia. Vet Rec 153: 141–145

    PubMed  CAS  Google Scholar 

  145. Minke JM, Siger L, Karaca K, Austgen L, Gordy P, Bowen R, Renshaw RW, Loosmore S, Audonnet JC, Nordgren B (2004) Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge. Arch Virol (Suppl) 18: 221–230

    Google Scholar 

  146. Siger L, Bowen RA, Karaca K, Murray MJ, Gordy PW, Loosmore SM, Audonnet JC, Nordgren RM, Minke JM (2004) Assessment of the efficacy of a single dose of a recombinant vaccine against West Nile virus in response to natural challenge with West Nile virus-infected mosquitoes in horses. Am J Vet Res 65: 1459–1462

    PubMed  CrossRef  Google Scholar 

  147. Grosenbaugh DA, Backus CS, Karaca K, Minke JM, Nordgren RM (2004) The anamnestic serologic response to vaccination with a canarypox virus-vectored recombinant West Nile virus (WNV) vaccine in horses previously vaccinated with an inactivated WNV vaccine. Vet Ther 5: 251–257

    PubMed  CAS  Google Scholar 

  148. Paoletti E, Tartaglia J, Taylor J (1994) Safe and effective poxvirus vectors-NYVAC and ALVAC. Dev Biol Stand 82: 65–69

    PubMed  CAS  Google Scholar 

  149. Paoletti E, Taylor J, Meignier B, Meric C, Tartaglia J (1995) Highly attenuated poxvirus vectors: NYVAC, ALVAC and TROVAC. Dev Biol Stand 84: 159–163

    PubMed  CAS  Google Scholar 

  150. Wimsatt J, Biggins D, Innes K, Taylor B, Garell D (2003) Evaluation of oral and subcutaneous delivery of an experimental canarypox recombinant canine distemper vaccine in the Siberian polecat (Mustela eversmanni). J Zoo Wildl Med 34: 25–35

    PubMed  Google Scholar 

  151. Welter J, Taylor J, Tartaglia J, Paoletti E, Stephensen CB (2000) Vaccination against canine distemper virus infection in infant ferrets with and without maternal antibody protection, using recombinant attenuated poxvirus vaccines. J Virol 74: 6358–6367

    PubMed  CAS  CrossRef  Google Scholar 

  152. Jones L, Tenorio E, Gorham J, Yilma T (1997) Protective vaccination of ferrets against canine distemper with recombinant pox virus vaccines expressing the H or F genes of rinderpest virus. Am J Vet Res 58: 590–593

    PubMed  CAS  Google Scholar 

  153. Tartaglia J, Jarrett O, Neil JC, Desmettre P, Paoletti E (1993) Protection of cats against feline leukemia virus by vaccination with a canarypox virus recombinant, ALVAC-FL. J Virol 67: 2370–2375

    PubMed  CAS  Google Scholar 

  154. Franchini G, Gurunathan S, Baglyos L, Plotkin S, Tartaglia J (2004) Poxvirusbased vaccine candidates for HIV: two decades of experience with special emphasis on canarypox vectors. Expert Rev Vaccines 3: S75–S88

    PubMed  CAS  CrossRef  Google Scholar 

  155. Belshe RB, Stevens C, Gorse GJ, Buchbinder S, Weinhold K, Sheppard H, Stablein D, Self S, McNamara J, Frey S et al (2001) Safety and immunogenicity of a canarypox-vectored human immunodeficiency virus Type 1 vaccine with or without gp120: a phase 2_study in higher-and lower-risk volunteers. J Infect Dis 183: 1343–1352

    PubMed  CAS  CrossRef  Google Scholar 

  156. de Bruyn G, Rossini AJ, Chiu YL, Holman D, Elizaga ML, Frey SE, Burke D, Evans TG, Corey L, Keefer MC (2004) Safety profile of recombinant canarypox HIV vaccines. Vaccine 22: 704–713

    PubMed  CrossRef  CAS  Google Scholar 

  157. Robinson HL, Montefiori DC, Johnson RP, Manson KH, Kalish ML, Lifson JD, Rizvi TA, Lu S, Hu SL, Mazzara GP et al (1999) Neutralizing antibody-independent containment of immunodeficiency virus challenges by DNA priming and recombinant pox virus booster immunizations. Nat Med 5: 526–534

    PubMed  CAS  CrossRef  Google Scholar 

  158. Dale CJ, De Rose R, Stratov I, Chea S, Montefiori DC, Thomson S, Ramshaw IA, Coupar BE, Boyle DB, Law M, Kent SJ (2004) Efficacy of DNA and fowlpox virus priming/boosting vaccines for simian/human immunodeficiency virus. J Virol 78: 13819–13828

    PubMed  CAS  CrossRef  Google Scholar 

  159. Leong KH, Ramsay AJ, Boyle DB, Ramshaw IA (1994) Selective induction of immune responses by cytokines coexpressed in recombinant fowlpox virus. J Virol 68: 8125–8130

    PubMed  CAS  Google Scholar 

  160. Dale CJ, De Rose R, Wilson KM, Croom HA, Thomson S, Coupar BE, Ramsay A, Purcell DF, Ffrench R, Law M et al (2004) Evaluation in macaques of HIV-1 DNA vaccines containing primate CpG motifs and fowlpoxvirus vaccines coexpressing IFNgamma or IL-12. Vaccine 23: 188–197

    PubMed  CAS  CrossRef  Google Scholar 

  161. Dale CJ, Zhao A, Jones SL, Boyle DB, Ramshaw IA, Kent SJ (2000) Induction of HIV-1-specific T-helper responses and type 1 cytokine secretion following therapeutic vaccination of macaques with a recombinant fowlpoxvirus coexpressing interferon-gamma. J Med Primatol 29: 240–247

    PubMed  CAS  CrossRef  Google Scholar 

  162. Kelleher AD, Puls RL, Bebbington M, Boyle D, Ffrench R, Kent SJ, Kippax S, Purcell DFJ, Thomson S, Wand H et al (2006) A randomised, placebo-controlled Phase I trial of DNA prime, recombinant fowlpox virus boost prophylactic vaccine for HIV-1. AIDS 20: 294–297

    PubMed  CAS  CrossRef  Google Scholar 

  163. Cohen J (2004) AIDS vaccines. HIV dodges one-two punch. Science 305: 1545–1547

    PubMed  CAS  CrossRef  Google Scholar 

  164. Emery S, Workman S, Puls RL, Block M, Baker D, Bodsworth N, Anderson J, Crowe SM, French MAH, Aichelburg A et al on behalf of the NCHVR01 study team (2005) Randomised, placebo-controlled, phase I/IIa evaluation of the safety and immunogenicity of fowlpox virus expressing HIG gag-pol and intereferon-gamm in HIV-1_infected subjects. Human Vaccines 1: 232–238

    PubMed  CAS  Google Scholar 

  165. Anderson RJ, Hannan CM, Gilbert SC, Laidlaw SM, Sheu EG, Korten S, Sinden R, Butcher GA, Skinner MA, Hill AV (2004) Enhanced CD8+ T cell immune responses and protection elicited against Plasmodium berghei malaria by prime boost immunization regimens using a novel attenuated fowlpox virus.J Immunol 172: 3094–3100

    PubMed  CAS  Google Scholar 

  166. Prieur E, Gilbert SC, Schneider J, Moore AC, Sheu EG, Goonetilleke N, Robson KJ, Hill AV (2004) A Plasmodium falciparum candidate vaccine based on a six-antigen polyprotein encoded by recombinant poxviruses. Proc Natl Acad Sci USA 101: 290–295

    PubMed  CAS  CrossRef  Google Scholar 

  167. Hodge JW, Grosenbach DW, Schlom J (2002) Vector-based delivery of tumorassociated antigens and T-cell co-stimulatory molecules in the induction of immune responses and anti-tumor immunity. Cancer Detect Prev 26: 275–291

    PubMed  CAS  CrossRef  Google Scholar 

  168. Hodge JW, Grosenbach DW, Aarts WM, Poole DJ, Schlom J (2003) Vaccine therapy of established tumors in the absence of autoimmunity. Clin Cancer Res 9: 1837–1849

    PubMed  CAS  Google Scholar 

  169. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Topalian SL, Sherry RM, Restifo NP, Wunderlich JR, Seipp CA, Rogers-Freezer L et al (2003) Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma. Clin Cancer Res 9: 2973–2980

    PubMed  CAS  Google Scholar 

  170. Triozzi PL, Aldrich W, Allen KO, Lima J, Shaw DR, Strong TV (2005) Antitumor activity of the intratumoral injection of fowlpox vectors expressing a triad of costimulatory molecules and granulocyte/macrophage colony stimulating factor in mesothelioma. Int J Cancer 113: 406–414

    PubMed  CAS  CrossRef  Google Scholar 

  171. Triozzi PL, Strong TV, Bucy RP, Allen KO, Carlisle RR, Moore SE, Lobuglio AF, Conry RM (2005) Intratumoral administration of a recombinant canarypox virus expressing interleukin 12 in patients with metastatic melanoma. Hum Gene Ther 16: 91–100

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Boyle, D.B. (2007). Genus Avipoxvirus . In: Mercer, A.A., Schmidt, A., Weber, O. (eds) Poxviruses. Birkhäuser Advances in Infectious Diseases. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7557-7_11

Download citation