Poxviruses pp 203-215 | Cite as

Genus Suipoxvirus

  • Gustavo A. Delhon
  • Edan R. Tulman
  • Claudio L. Afonso
  • Daniel L. Rock
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Swinepox virus (SWPV) has been classified as the sole member of the genus Suipoxvirus in the subfamily Chordopoxvirinae. Swine represent the only known host of SWPV; in adult animals the virus usually causes a mild, self-limiting disease. Infection occurs via skin abrasions, and the virus replicates in epidermal keratinocytes of the stratum spinosum. Tissues other than the skin are rarely affected. SWPV infection induces protective immunity.

The complete genomic sequence of SWPV (strain 17077-99) is known. The genome contains a central coding region and two identical inverted terminal repeat regions. Four of 150 putative genes seem unique for this virus. A number of SWPV proteins are likely involved in the disruption or modulation of host immune responses as indicated by their similarity to other viral immunomodulators and by the presence of predicted sequences. The distinct nature of the SWPV virulence and host range gene complement suggests that it contributes to SWPV host specificity. Due to its restricted host range, use of SWPV as a vaccine expression vector has been proposed.


Vaccinia Virus Classical Swine Fever Virus Myxoma Virus Stratum Spinosum Cowpox Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwarte LH, Biester HE (1941) Pox in swine. Am J Vet Res 2: 136–140Google Scholar
  2. 2.
    de Boer GF (1975) Swinepox, virus isolation, experimental infections and the differentiation from vaccinia virus infections. Arch Virol 49: 141–150PubMedCrossRefGoogle Scholar
  3. 3.
    Massung RF, Moyer RW (1991) The molecular biology of swinepox virus. II. The infectious cycle. Virology 180: 355–364Google Scholar
  4. 4.
    Datt NS (1964) Comparative studies of pigpox and vaccinia viruses. I. Host range pathogenicity. J Comp Pathol 74: 62–69PubMedGoogle Scholar
  5. 5.
    Shope RE (1940) Swine pox. Arch Ges Virusforsch 1: 457–467CrossRefGoogle Scholar
  6. 6.
    Moyer RW, Arif B, Black DN, Boyle DB, Buller RM, Dumbell KR, Esposito JJ, McFadden G, Moss B, Mercer AA et al (2000) Family Poxviridae. In: MHV van Regenmortel, CM Fauquet, DHL Bishop, EB Carstens, MK Estes, SM Lemon, J Maniloff, MA Mayo, DJ McGeoch, CR Pringle, RB Wickner (eds) Virus taxonomy. Academic Press, New YorkGoogle Scholar
  7. 7.
    Afonso CL, Tulman ER, Lu Z, Zsak L, Osorio FA, Balinsky C, Kutish GF, Rock DL (2002) The genome of swinepox virus. J Virol 76: 783–790PubMedCrossRefGoogle Scholar
  8. 8.
    Schnitzlein WM, Tripathy DN (1991) Identification and nucleotide sequence of the thymidine kinase gene of swinepox virus. Virology 18: 727–732CrossRefGoogle Scholar
  9. 9.
    Spinola M (1842) Krankheiten der Schweine. Ed A Hieschwald, Berlin, 204Google Scholar
  10. 10.
    McNutt SH, Murray C, Purwin P (1929) Swine pox. Am Vet Med Assoc 74: 752–761Google Scholar
  11. 11.
    Poenaru J (1913) Recherches sur le virus filtrant dans la variole des porcelets. Bull Soc Cent Med Vet 67: 148Google Scholar
  12. 12.
    Akazawa S, Matsumura J (1937) Rep Govt Inst Vet Res (Fusan) X: p8Google Scholar
  13. 13.
    Manninger R, Csontos J, Salyi J (1940) über die ätiologie des pockenartigen Ausschlages der Ferkel. Arch Tierheilkunde 75: 159–179Google Scholar
  14. 14.
    Blakemore F, Abdussalam M (1956) Morphology of the elementary bodies and cell inclusions in swine pox. J Comp Pathol 66: 373–377PubMedGoogle Scholar
  15. 15.
    Kasza L, Bohl EH, Jones DO (1960) Isolation and cultivation of swine pox virus in primary cell cultures of swine origin. Am J Vet Res 21: 269–273PubMedGoogle Scholar
  16. 16.
    Paton DJ, Brown IH, Fitton J, Wrathall AE (1990) Congenital pig pox: A case report. Vet Rec 127: 204PubMedGoogle Scholar
  17. 17.
    Jubb TF, Ellis TM, Peet RL, Parkinson J (1992) Swinepox in pigs in northern Western Australia. Aust Vet J 69: 99PubMedGoogle Scholar
  18. 18.
    Borst GH, Kimman TG, Gielkens AL, van der Kamp JS (1990) Four sporadic cases of congenital swinepox. Vet Rec 127: 61–63PubMedGoogle Scholar
  19. 19.
    Kim JCS, Luong LC (1975) Ultrastructure of swine pox. Vet Med Small Anim Clin 70: 1043–1045PubMedGoogle Scholar
  20. 20.
    Olufemi BE, Ayoade GO, Ikede BO, Akpavie SO, Nwufoh KJ (1981) Swine pox in Nigeria. Vet Rec 109: 278–280PubMedGoogle Scholar
  21. 21.
    Kasza L, Griesemer RA (1962) Experimental Swine Pox. Am J Vet Res 23: 443–450PubMedGoogle Scholar
  22. 22.
    Meyer RC, Conroy JD (1972) Experimental swinepox in gnotobiotic piglets. Res Vet Sci 13: 334–338PubMedGoogle Scholar
  23. 23.
    Miller RC, Olson LD (1980) Experimental induction of cutaneous streptococcal abscesses in swine as a sequela to swinepox. Am J Vet Res 41: 341–347PubMedGoogle Scholar
  24. 24.
    Cheville NF (1966) The cytopathology of swine pox in the skin of swine. Am J Pathol 49: 339–352PubMedGoogle Scholar
  25. 25.
    Teppema JS, De Boer GF (1975) Ultrastructural aspects of experimental swinepox with special reference to inclusion bodies. Arch Virol 49: 151–163PubMedCrossRefGoogle Scholar
  26. 26.
    Cheville NF (1966) Immunofluorescent and morphologic studies on swinepox. Pathol Vet 3: 556–564PubMedCrossRefGoogle Scholar
  27. 27.
    Plowright W, Ferris RD (1958) The growth and cytopathogenicity of sheep-pox virus in tissue cultures. Br J Exp Pathol 39: 424–435PubMedGoogle Scholar
  28. 28.
    Conroy JD, Meyer RC (1971) Electron Microscopy of swinepox virus in germfree pigs and in cell culture. Am J Vet Res 32: 2021–2032PubMedGoogle Scholar
  29. 29.
    Smid B, Valicek L, Mensik J (1973) Replication of swinepox virus in the skin of naturally infected pigs. Electron microscopic study. Zentralbl Veterinarmed B 20: 603–612Google Scholar
  30. 30.
    Massung RF, Jayarama V, Moyer RW (1993) DNA sequence analysis of conserved and unique regions of swinepox virus: identification of genetic elements supporting phenotypic observations including a novel G protein-coupled receptor homologue. Virology 197: 511–528PubMedCrossRefGoogle Scholar
  31. 31.
    Kawagishi-Kobayashi M, Cao C, Lu J, Ozato K, Dever TE (2000) Pseudosubstrate inhibition of protein kinase PKR by swine pox virus C8L gene product. Virology 276: 424–434PubMedCrossRefGoogle Scholar
  32. 32.
    Garg SK, Meyer RC (1972) Adaptation of swinepox virus to an established cell line. Appl Microbiol 23: 180–182PubMedGoogle Scholar
  33. 33.
    Williams PP, Hall MR, McFarland MD (1989) Immunological responses of cross-bred and in-bred miniature pigs to swine poxvirus. Vet Immunol Immunopathol 23: 149–159PubMedCrossRefGoogle Scholar
  34. 34.
    Brunetti CR, Paulose-Murphy M, Singh R, Qin J, Barrett JW, Tardivel A, Schneider P, Essani K, McFadden G (2003) A secreted high-affinity inhibitor of human TNF from Tanapox virus. Proc Natl Acad Sci USA 100: 4831–4836PubMedCrossRefGoogle Scholar
  35. 35.
    Bartee E, Mansouri M, Hovey Nerenberg BT, Gouveia K, Fruh K (2004) Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J Virol 78: 1109–1120PubMedCrossRefGoogle Scholar
  36. 36.
    Sanderson CM, Parkinson JE, Hollinshead M, Smith GL (1996) Overexpression of the vaccinia virus A38L integral membrane protein promotes Ca2+ influx into infected cells. J Virol 70: 905–914PubMedGoogle Scholar
  37. 37.
    Najarro P, Lee HJ, Fox J, Pease J, Smith GL (2003) Yaba-like disease virus protein 7L is a cell-surface receptor for chemokine CCL1. J Gen Virol 84: 3325–3336PubMedCrossRefGoogle Scholar
  38. 38.
    Guerin JL, Gelfi J, Boullier S, Delverdier M, Bellanger FA, Bertagnoli S, Drexler I, Sutter G, Messud-Petit F (2002) Myxoma virus leukemia-associated protein is responsible for major histocompatibility complex class I and Fas-CD95 down-regulation and defines scrapins, a new group of surface cellular receptor abductor proteins. J Virol 76: 2912–2923PubMedCrossRefGoogle Scholar
  39. 39.
    Mansouri M, Bartee E, Gouveia K, Hovey Nerenberg BT, Barrett J, Thomas L, Thomas G, McFadden G, Fruh K (2003) The PHD/LAP-domain protein M153R of myxomavirus is a ubiquitin ligase that induces the rapid internalization and lysosomal destruction of CD4. J Virol 77: 1427–1440PubMedCrossRefGoogle Scholar
  40. 40.
    Langland JO, Jacobs BL (2002) The role of the PKR-inhibitory genes, E3L and K3L, in determining vaccinia virus host range. Virology 299: 133–141PubMedCrossRefGoogle Scholar
  41. 41.
    Smith GL, Chan YS, Howard ST (1991) Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. J Gen Virol 72: 1349–1376PubMedCrossRefGoogle Scholar
  42. 42.
    Bowie AG, Haga IR (2005) The role of toll-like receptors in the host response to viruses. Mol Immunol 42: 859–867CrossRefGoogle Scholar
  43. 43.
    Stack J, Haga IR, Schroder M, Barlett NW, Maloney G, Reading PC, Fitzgerald KA, Smith GL, Bowie AG (2005) Vaccinia virus protein A46R targets multiple toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 201: 1007–1018PubMedCrossRefGoogle Scholar
  44. 44.
    DiPerna G, Stack J, Bowie AG, Boyd A, Kotwal G, Zhang Z, Arvikar S, Latz E, Fitzgerald KA, Marshalll WL (2004) Poxvirus protein N1L targets the I-κB kinase complex, inhibits signaling to NF-κB by the tumor necrosis factor superfamily of receptors, and inhibits NF-κB and IRF3 signaling by Toll-like receptors. J Biol Chem 279: 36570–36578PubMedCrossRefGoogle Scholar
  45. 45.
    Everett H, Barry M, Lee SF, Sun X, Graham K, Stone J, Bleackley RC, McFadden G (2000) M11L: a novel mitochondria-localized protein of myxoma virus that blocks apoptosis of infected leukocytes. J Exp Med 191: 1487–1498PubMedCrossRefGoogle Scholar
  46. 46.
    Perkus ME, Goebel SJ, Davis SW, Johnson GP, Limbach K, Norton EK, Paoletti E (1990) Vaccinia virus host range genes. Virology 179: 276–286PubMedCrossRefGoogle Scholar
  47. 47.
    Betakova T, Wolffe E, Moss B (2000) The vaccinia virus A14.5L gene encodes a hydrophobic 53-amino-acid virion membrane protein that enhances virulence in mice and is conserved among vertebrate poxviruses. J Virol 74: 4085–4092PubMedCrossRefGoogle Scholar
  48. 48.
    Senkevich TG, Koonin EV, Buller RM (1994) A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. Virology 198: 118–128PubMedCrossRefGoogle Scholar
  49. 49.
    Senkevich TG, Wolffe EJ, Buller RM (1995) Ectromelia virus RING finger protein is localized in virus factories and is required for virus replication in macrophages. J Virol 69: 4103–4111PubMedGoogle Scholar
  50. 50.
    Nerenberg BT, Taylor J, Bartee E, Gouveia K, Barry M, Fruh K (2005) The poxviral RING protein p28_is a ubiquitin ligase that targets ubiquitin to viral replication factories. J Virol 79: 597–601PubMedCrossRefGoogle Scholar
  51. 51.
    Gillard S, Spehner D, Drillien R, Kirn A (1986) Localization and sequence of a vaccinia virus gene required for multiplication in human cells. Proc Natl Acad Sci USA 83: 5573–5577PubMedCrossRefGoogle Scholar
  52. 52.
    Mossman K, Lee SF, Barry M, Boshkov L, McFadden G (1996) Disruption of M-T5, a novel myxoma virus gene member of poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits. J Virol 70: 4394–4410PubMedGoogle Scholar
  53. 53.
    Spehner D, Gillard S, Drillien R, and Kirn A (1988) A cowpox virus gene required for multiplication in Chinese hamster ovary cells. J Virol 62: 1297–1304PubMedGoogle Scholar
  54. 54.
    Camus-Bouclainville C, Fiette L, Bouchiha S, Pignolet B, Counor D, Filipe C, Gelfi J, Messud-Petit F (2004) A virulence factor of myxoma virus colocalizes with NF-κB in the nucleus and interferes with inflammation. J Virol 78: 2510–2516PubMedCrossRefGoogle Scholar
  55. 55.
    Johnston JB, Wang G, Barrett JW, Nazarian SH, Colwill K, Moran M, McFadden G (2005) Myxoma virus M-T5 protects infected cells from the stress of cell cycle arrest through its interaction with host cell cullin-1. J Virol 79: 10750–10763PubMedCrossRefGoogle Scholar
  56. 56.
    Antoine G, Scheiflinger F, Dorner F, Falkner FG (1998) The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses. Virology 244: 365–396PubMedCrossRefGoogle Scholar
  57. 57.
    Shchelkunov SN, Safronov PF, Totmenin AV, Petrov NA, Ryazankina OI, Gutorov VV, Kotwal GJ (1998) The genome sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 243: 432–460PubMedCrossRefGoogle Scholar
  58. 58.
    Kochneva G, Kolosova I, Maksyutova T, Ryabchikova E, Shchelkunov S (2005) Effects of deletions of kelch-like genes on cowpox virus biological properties. Arch Virol 150: 1857–1870PubMedCrossRefGoogle Scholar
  59. 59.
    Tulman ER, Afonso CL, Lu Z, Zsak L, Sur J-H, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish GF, Rock DL (2002) The genomes of sheeppox and goatpox viruses. J Virol 76: 6054–6061PubMedCrossRefGoogle Scholar
  60. 60.
    Pires de Miranda M, Reading PC, Tscharke DC, Mur Phy BJ, Smith GL (2003) The vaccinia virus kelch-like protein C2L affects calcium-independent adhesion to the extracellular matrix and inflammation in a murine intradermal model. J Gen Virol 84: 2459–2471PubMedCrossRefGoogle Scholar
  61. 61.
    Kawagishi-Kobayashi M, Cao C, Lu J, Ozato K, Dever TE 2000 Pseudosubstrate inhibition of protein kinase PKR by swine pox virus C8L gene product. Virology 276: 424–434PubMedCrossRefGoogle Scholar
  62. 62.
    Barcena J, Lorenzo MM, Sanchez-Puig JM, Blasco R (2000) Sequence and analysis of a swinepox virus homologue of the vaccinia virus major envelope protein P37 (F13L). J Gen Virol 81: 1073–1085PubMedGoogle Scholar
  63. 63.
    Feller JA, Massung RF, Turner PC, Gibbs EP, Bockamp EO, Beloso A, Talavera A, Vinuela E, Moyer RW (1991) Isolation and molecular characterization of the swinepox virus thymidine kinase gene. Virology 183: 578–585PubMedCrossRefGoogle Scholar
  64. 64.
    Winslow BJ, Cochran MD, Holzenburg A, Sun J, Junker DE, Collisson EW (2003) Replication and expression of a swinepox virus vector delivering feline leukemia virus gag and env to cell lines of swine and feline origin. Virus Res 98: 1–15PubMedCrossRefGoogle Scholar
  65. 65.
    Barcena J, Blasco R (1998) Recombinant swinepox virus expressing beta-galactosidase: investigation of viral host range and gene expression levels in cell culture. Virology 243: 396–405PubMedCrossRefGoogle Scholar
  66. 66.
    Hahn J, Park S-H., Song J-Y, An S-H, Ahn B-Y (2001) Construction of recombinant swinepox viruses and expression of the classical swine fever virus E2 protein. J Virol Methods 93: 49–56PubMedCrossRefGoogle Scholar
  67. 67.
    Foley PL, Paul PS, Levings RL, Hanson SK, Middle LA (1991) Swinepox virus as a vector for the delivery of immunogens. Ann NY Acad Sci 646: 220–222PubMedCrossRefGoogle Scholar
  68. 68.
    Tripathy DN (1999) Swinepox virus as a vaccine vector for swine pathogens. Adv Vet Med 41: 463–480PubMedGoogle Scholar
  69. 69.
    van der Leek ML, Feller JA, Sorensen G, Isaacson W, Adams CL, Borde DJ, Pfeiffer N, Tran T, Moyer RW, Gibbs EPJ (1994) Evaluation of swinepox virus as a vaccine vector in pigs using an Aujeszky’s disease (pseudorabies) virus gene insert coding for glycoproteins gp50 and gp63. Vet Rec 134: 13–18PubMedGoogle Scholar
  70. 70.
    Winslow BJ, Kalabat DY, Brown SM, Cochran MD, Collisson EW (2005) Feline B7.1 and B7.2 proteins produced from swinepox virus vectors are natively processed and biologically active: Potential for use as non-chemical adjuvants. Vet Microbiol 111: 1–13PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Gustavo A. Delhon
    • 1
    • 3
  • Edan R. Tulman
    • 2
  • Claudio L. Afonso
    • 4
  • Daniel L. Rock
    • 1
  1. 1.Department of Pathobiology, College of Veterinary MedicineUniversity of IllinoisUrbanaUSA
  2. 2.Center of Excellence for Vaccine ResearchUniversity of ConnecticutStorrsUSA
  3. 3.Area of Virology, School of Veterinary ScienceUniversity of Buenos AiresBuenos AiresArgentina
  4. 4.Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of AgricultureAthensUSA

Personalised recommendations