System identification is concerned with the estimation of a system on the basis of observed data. This involves specification of the model structure, estimation of the unknown model parameters, and validation of the resulting model. Least squares and maximum likelihood methods are discussed, for stationary processes (without inputs) and for input-output systems.


Autoregressive Model Unbiased Estimator Orthogonality Condition White Noise Process Well Linear Unbiased Estimator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Birkhäuser Verlag 2007

Personalised recommendations