Advertisement

Nanotechnology: Towards the detection and treatment of inflammatory diseases

  • Sreekant Murthy
  • Elisabeth Papazoglou
  • Nandhakumar Kanagarajan
  • Narasim S. Murthy
Part of the Progress in Inflammation Research book series (PIR)

Summary and conclusions

Biological systems operate at the nanoscale. Nanomedicine is the application of nanotechnology to monitor and treat biological systems in health and disease. This is accomplished by real time monitoring of molecular signaling at the cellular and tissue level. During the past decade, there has been an explosion in this field, resulting in revolutionary advances in determining the microstructure and function of living systems. These discoveries have led to the development of powerful tools for fundamental biological and medical research. Nanotechnology has been applied to targeted drug delivery to minimize side effects, creating implantable materials as scaffolds for tissue engineering, creating implantable devices, surgical aids and nanorobotics, as well as throughput drug screening and medical diagnostic imaging. The nanoinitiatives are funded by governments and private sources throughout the world to develop or further refine the technology to provide the beyond-imaginable, most sophisticated tools to a physician and scientists to inflammatory diseases. No doubt, there will be many technical, regulatory and legal challenges in the deployment of these technologies. Unquestionably, there is enough desire and commitment to meet these challenges for the good of society and betterment of the quality of life.

Keywords

Carbon Nanotubes Fluorescence Resonance Energy Transfer Iron Oxide Nanoparticles Liposomal Formulation Fluorescence Lifetime Imaging Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fiocchi C (1997) Intestinal inflammation: a complex interplay of immune and nonimmune cell interactions. Am J Physiol 273: G769–G775PubMedGoogle Scholar
  2. 2.
    National Nanotechnology Initiative: www.nano.govGoogle Scholar
  3. 3.
    Brannon-Pepppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11): 1649–1659CrossRefGoogle Scholar
  4. 4.
    Wheatley MA, Forsberg F, Dube N, Patel M, Oeffinger BE (2006) Surfactant stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging. Ultrasound Med Biol 32(1): 83–93PubMedCrossRefGoogle Scholar
  5. 5.
    Choi NS, Yoo KH, Yoon KS, Maeng PJ, Kim SH (2004) Nano-scale proteomics approach using two-dimensional fibrin zymography combined with fluorescent SYPRO ruby dye. J Biochem Mol Biol 37(3): 298–303PubMedGoogle Scholar
  6. 6.
    Vo-Dinh T, Yan F, Stokes DL (2005) Plasmonics-based nanostructures for surfaceenhanced Raman scattering bioanalysis. Methods Mol Biol 300: 255–283PubMedGoogle Scholar
  7. 7.
    West JL, Halas NJ (2003) Engineered materials for biophotonics applications: improving sensing, and therapeutics. Annu Rev Biomed Eng 5: 285–292PubMedCrossRefGoogle Scholar
  8. 8.
    Hernando A, Crespo P, Garcia MA (2005) Metallic magnetic nanoparticles. Scientific World Journal 5: 972–1001PubMedGoogle Scholar
  9. 9.
    Cloninger MJ (2002) Biological applications of dendrimers. Curr Opin Chem Biol 6(6): 742–748PubMedCrossRefGoogle Scholar
  10. 10.
    Moghimi SM, Hunter CA, Murray JC (2005) Nanomedicine: current status and future prospects”. FASEB J 19: 311–330PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang S (2002) Emerging biological materials through molecular self-assembly. Biotechnol Adv 20: 321–339PubMedCrossRefGoogle Scholar
  12. 12.
    Sparks D, Hubbard T (2004) Micromachined needles and lancets with design adjustable bevel angles. J Micromech Microeng 14: 1230–1233CrossRefGoogle Scholar
  13. 13.
    McAllister DV, Allen MG, Prausnitz MR (2000) Microfabricated microneedles for gene and drug delivery. Ann Rev Biomed Eng 2: 289–313CrossRefGoogle Scholar
  14. 14.
    Jain KK (2005) Role of nanobiotechnology in developing personalized medicine for cancer. Technol Cancer Res Treat 4(6): 645–650PubMedGoogle Scholar
  15. 15.
    Hayes ME, Drummond DC, Kirpotin DB, Zheng WW, Noble CO, Park JW, Marks JD, Benz CC, Hong K (2006) Genospheres: self-assembling nucleic acid-lipid nanoparticles suitable for targeted gene delivery. Gene Therapy 13(7): 646–651PubMedCrossRefGoogle Scholar
  16. 16.
    Wenonah Vercoutere W, Winters-Hilt S, Olsen H, Deamer D, Haussler D, Akeson M (2001) Rapid discrimination among individual DNA hairpin molecules at singlenucleotide resolution using an ion channel. Nat Biotechnol 19: 248–252CrossRefGoogle Scholar
  17. 17.
    Zhang S (2001) Molecular self-assembly. In: Encyclopedia of Materials: Science & Technology. Elsevier Science, Oxford, 5822–5829Google Scholar
  18. 18.
    Majumdar A (2002) Bioassays based on molecular nanomechanics. Dis Markers 18: 167–174PubMedGoogle Scholar
  19. 19.
    Kam NW, Liu Z, Dai H, (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed Engl 45(4): 577–581PubMedCrossRefGoogle Scholar
  20. 20.
    Kam NW, Dai H, (2005), Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc 127(16): 6021–6026PubMedCrossRefGoogle Scholar
  21. 21.
    Zhu HW, Xu CL, Wu DH, Wei BQ, Vajtai R, Ajayan PM, (2002) Direct synthesis of long single-walled carbon nanotubes strands. Science 296: 884PubMedCrossRefGoogle Scholar
  22. 22.
    Raviv U, Needleman DJ, Li Y, Miller HP, Wilson L, Safinya CR (2005) Cationic liposome-microtubule complexes: Pathways to the formation of two-state lipid-protein nanotubes with open or closed ends. Proc Natl Acad Sci USA 102: 11167–11172PubMedCrossRefGoogle Scholar
  23. 23.
    Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M (2003) Accumulation of ultra-small super paramagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107: 2453–2458PubMedCrossRefGoogle Scholar
  24. 24.
    West JL, Halas NL (2000) Applications of nanotechnology to biotechnology. Curr Opin Biotech 11: 215–217PubMedCrossRefGoogle Scholar
  25. 25.
    Han M, Gao X, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19: 631–635PubMedCrossRefGoogle Scholar
  26. 26.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4: 435–446PubMedCrossRefGoogle Scholar
  27. 27.
    Lovric J, Bazzi HS, Cuie Y, Fortin GR, Winnik FM, Maysinger D (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83(5): 377–385PubMedCrossRefGoogle Scholar
  28. 28.
    Anzai Y (2004) Superparamagnetic iron oxide nanoparticles: nodal metastases and beyond. Top Magn Reson Imaging 15(2): 103–111PubMedCrossRefGoogle Scholar
  29. 29.
    Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT (2000) Tat peptidederivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18: 410–414PubMedCrossRefGoogle Scholar
  30. 30.
    Yang H, Kao WJ (2006) Dendrimers for pharmaceutical and biomedical applications. J Biomater Sci Polym Ed 17: 3–19PubMedCrossRefGoogle Scholar
  31. 31.
    Lee CC, McKay JA, Frechet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 12: 1517–1526CrossRefGoogle Scholar
  32. 32.
    Yan GP, Hu B, Liu ML, Li LY (2005) Synthesis and evaluation of gadolinium complexes based on PAMAM as MRI contrast agents. J Pharm Pharmacol 57(3): 351–357PubMedCrossRefGoogle Scholar
  33. 33.
    Meng F, Engbers GH, Feijen J (2005) Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. J Control Release 101: 187–198PubMedCrossRefGoogle Scholar
  34. 34.
    Ghoroghchian PP, Frail RP, Susumu K, Blessington D, Brannan AK, Bates FS, Chance B, Hammer DA, Therien MJ (2005) Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. Proc Natl Acad Sci USA 102(8): 2922–2927PubMedCrossRefGoogle Scholar
  35. 35.
    Torchilin VP(2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2): 145–160Google Scholar
  36. 36.
    Reiner JE, Wells JM, Kishore RB, Pfefferkom C, Helmerson K (2006) Stable and robust polymer nanotubes stretched from polymersomes. Proc Natl Acad Sci USA 103(5): 1173–1177PubMedCrossRefGoogle Scholar
  37. 37.
    Kubik T, Bogunia-Kubik K, Sugisaka M (2005) Nanotechnology on duty in medical applications. Curr Pharm Biotechnol 6: 17–33PubMedGoogle Scholar
  38. 38.
    Patolsky F, Zheng G, Hayden O, Lakadamyali M, Zhuang X, Lieber C (2004) Electrical detection of single viruses. Proc Natl Acad Sci USA 101: 14017–14022PubMedCrossRefGoogle Scholar
  39. 39.
    Hirsch LR, Halas NJ, West JL (2005) Whole-blood immunoassay facilitated by gold nanoshell-conjugate antibodies. Methods Mol Biol 303: 101–111PubMedGoogle Scholar
  40. 40.
    Shao Z, Zhang Y (1996) Biological cryo atomic force microscopy: a brief review. Ultramicroscopy 66(3–4): 141–152PubMedGoogle Scholar
  41. 41.
    Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264(5157): 415–417PubMedCrossRefGoogle Scholar
  42. 42.
    Kuznetsov YG, Victoria JG, Low A, Robinson WE, Fan H, McPherson A (2004) Atomic force microscopy imaging of retroviruses: human immunodeficiency virus and murine leukemia virus. Scanning 26(5): 209–216PubMedGoogle Scholar
  43. 43.
    Sheng X, Jung T, Wesson JA, Ward MD (2005) Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents. Proc Natl Acad Sci USA 102(2): 267–272PubMedCrossRefGoogle Scholar
  44. 44.
    Lynch M, Mosher C, Huff J, Nettikadan S, Johnson J, Henderson E (2004) Functional protein nanoarrays for biomarker profiling. Proteomics 4: 1695–1702PubMedCrossRefGoogle Scholar
  45. 45.
    Lee KB, Park SJ, Mirkin CA, Smith JC, Mirkisch M (2002) Protein nanoarrays generated by Dip-Pen nanolithography. Science 295: 1703–1705Google Scholar
  46. 46.
    Barauskas J, Johnson M, Tiberg E (2005) Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett 5(8): 1615–1619PubMedCrossRefGoogle Scholar
  47. 47.
    Cattel L, Ceruti M, Dosio F (2004) From conventional to stealth liposomes: a new frontier in cancer chemotherapy. J Chemother 16(Suppl 4): 94–97PubMedGoogle Scholar
  48. 48.
    Matsumura Y, Gotoh M, Muro K, Yamada Y, Shirao K, Shimada Y, Okuwa M, Matsumoto S, Miyata Y, Ohkura H et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15(3): 440–449CrossRefGoogle Scholar
  49. 49.
    Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, Colan SD, Asselin BL, Barr RD, Clavell LA et al (2004) The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 351(2): 145–153PubMedCrossRefGoogle Scholar
  50. 50.
    Working PK, Newman MS, Sullivan T, Brunner M, Podell M, Sahenk Z, Turner N (1998) Comparative intravenous toxicity of cisplatin solution and cisplatin encapsulated in long-circulating, pegylated liposomes in cynomolgus monkeys. Toxicol Sci 46(1): 155–165PubMedCrossRefGoogle Scholar
  51. 51.
    Harrington KJ, Lewanski CR, Northcote AD, Whittaker J, Wellbank H, Vile RG, Peters AM, Stewart JS (2001) Phase I-II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann Oncol 12(4): 493–496PubMedCrossRefGoogle Scholar
  52. 52.
    Meerum Terwogt JM, Groenewegen G, Pluim D, Maliepaard M, Tibben MM, Huisman A, ten Bokkel Huinink WW, Schot M, Welbank H, Voest EE et al (2002) Phase I and pharmacokinetic study of SPI-77, a liposomal encapsulated dosage form of cisplatin. Cancer Chemother Pharmacol 49(3): 201–210PubMedCrossRefGoogle Scholar
  53. 53.
    Stathopoulos GP, Boulikas T, Vougiouka M, Deliconstantinos G, Rigatos S, Darli E, Viliotou V, Stathopoulos JG (2005) Pharmacokinetics and adverse reactions of a new liposomal cisplatin (Lipoplatin): phase I study. Oncol Rep 13(4): 589–595PubMedGoogle Scholar
  54. 54.
    Mastrobattista E, Koning GA, Storm G (1999) Immunoliposomes for the targeted delivery of antitumor drugs. Adv Drug Deliv Rev 40(1–2): 103–127PubMedCrossRefGoogle Scholar
  55. 55.
    Park JW, Hong K, Kirpotin DB, Colbern G, Shalaby R, Baselga J, Shao Y, Nielsen UB, Marks JD, Moore D, Papahadjopoulos D, Benz CC (2002) Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res 8(4): 1172–1181PubMedGoogle Scholar
  56. 56.
    Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, Park JW (2003) Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR-and EGFRvIII-overexpressing tumor cells. Cancer Res 63(12): 3154–3161PubMedGoogle Scholar
  57. 57.
    Kesisoglou F, Zhou SY, Niemiec S, Lee JW, Zimmermann EM, Fleisher D (2005) Liposomal formulations of inflammatory bowel disease drugs: local versus systemic drug delivery in a rat model. Pharm Res 22(8): 1320–1330PubMedCrossRefGoogle Scholar
  58. 58.
    Metselaar JM, van den Berg WB, Holthuysen AE, Wauben MH, Storm G, van Lent PL (2004) Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann Rheum Dis 63(4): 348–353PubMedCrossRefGoogle Scholar
  59. 59.
    Konduri KS, Nandedkar S, Duzgunes N, Suzara V, Artwohl J, Bunte R, Gangadharam PR (2003) Efficacy of liposomal budesonide in experimental asthma. J Allergy Clin Immunol 111(2): 321–327PubMedCrossRefGoogle Scholar
  60. 60.
    Christofidou-Solomidou M, Muzykantov VR (2006) Antioxidant strategies in respiratory medicine. Treat Respir Med 5(1): 47–78PubMedCrossRefGoogle Scholar
  61. 61.
    Jain S, Jain N, Bhadra D, Tiwary AK, Jain NK (2005) Transdermal delivery of an analgesic agent using elastic liposomes: preparation, characterization and performance evaluation. Curr Drug Deliv 2(3): 223–233PubMedCrossRefGoogle Scholar
  62. 62.
    Huang W, Bai Y, Wang JD, Wu JB, Li GF, Zhang WM, Zhou DY (2005) Preparation oral liposome-encapsulated recombinant Helicobacter pylori heat shock protein 60 vaccine for prevention of Hp infection. Di Yi Jun Yi Da Xue Xue Bao 25(5): 531–534PubMedGoogle Scholar
  63. 63.
    Seth AK, Misra A, Umrigar D (2004) Topical liposomal gel of idoxuridine for the treatment of herpes simplex: pharmaceutical and clinical implications. Pharm Dev Technol 9(3): 277–289PubMedCrossRefGoogle Scholar
  64. 64.
    Pantarotto D, Partidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A (2003) Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem Biol 10(10): 961–966PubMedCrossRefGoogle Scholar
  65. 65.
    Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O’Malley KL (2001) Fullerenebased antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7(3): 243–246PubMedCrossRefGoogle Scholar
  66. 66.
    Bianco A (2004) Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin Drug Deliv 1(1): 57–65PubMedCrossRefGoogle Scholar
  67. 67.
    Quintana A, Raczka, Piehler L, Lee I, Myc A, Majoros I, Patri AK, Thomas T, Mule J, Baker JR (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19(9): 1310–1316PubMedCrossRefGoogle Scholar
  68. 68.
    Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E, Esmaeli B, Ring SE, Bedikian A, Hortobagyi GN, Ellerhorst JA (2002) Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8(5): 1038–1044PubMedGoogle Scholar
  69. 69.
    Kriz K, Ibraimi F, Lu M, F, Lars-Olof Hansson L-O, Kriz D (2005) Detection of C-reactive protein utilizing magnetic permeability detection based immunoassays. Anal Chem 77: 5920–5924PubMedCrossRefGoogle Scholar
  70. 70.
    Ackerman ME, Chan W, Laakkonen P, Bhatia SN, Rhoshahti (2002) Nanocrystal imaging in vivo. Proc Natl Acad Sci USA 99: 12167–12621CrossRefGoogle Scholar
  71. 71.
    Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Biotechnology 22: 969–976CrossRefGoogle Scholar
  72. 72.
    Mitchell P (2001) Turning the spotlight on cellular imaging. Nat Biotechnol 19(11): 1013–1017PubMedCrossRefGoogle Scholar
  73. 73.
    Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10(9): 993–998PubMedCrossRefGoogle Scholar
  74. 74.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709): 538–544PubMedCrossRefGoogle Scholar
  75. 75.
    Soltesz EG, Kim S, Kim SW, Laurence RG, De Grand AM, Parungo CP, Cohn LH, Bawendi MG, Frangioni JV (2006) Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann Surg Oncol 13(3): 386–396PubMedCrossRefGoogle Scholar
  76. 76.
    Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14(9): 497–504PubMedCrossRefGoogle Scholar
  77. 77.
    Perez JM, Josephson L, Weissleder R (2004) Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chembiochem 5(3): 261–264PubMedCrossRefGoogle Scholar
  78. 78.
    Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25): 2491–2499PubMedCrossRefGoogle Scholar
  79. 79.
    Bogdanov A Jr, Matuszewski L, Bremer C, Petrovsky A, Weissleder R (2002) Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging 1(1): 16–23PubMedCrossRefGoogle Scholar
  80. 80.
    Grimm J, Perez JM, Josephson L, Weissleder R (2004) Novel nanosensors for rapid analysis of telomerase activity. Cancer Res 64(2): 639–643PubMedCrossRefGoogle Scholar
  81. 81.
    West, JL (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100: 13549–13554PubMedCrossRefGoogle Scholar
  82. 82.
    Shikata F, Tokumitsu H, Ichikawa H, Fukumori Y (2002) In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron-capture therapy of cancer. Eur J Pharm Biopharm 53(1): 57–63PubMedCrossRefGoogle Scholar
  83. 83.
    Saito R, Krauze MT, Bringas JR, Noble C, McKnight TR, Jackson P, Wendland MF, Mamot C, Drummond DC, Kirpotin DB et al (2005) Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain. Exp Neurol 196: 381–389PubMedCrossRefGoogle Scholar
  84. 84.
    Chatziioannou AF (2002) PET scanners dedicated to molecular imaging of small animal models. Mol Imaging Biol 4: 47–63PubMedCrossRefGoogle Scholar
  85. 85.
    Cherry SR (2004) In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol 49: R13–R48PubMedCrossRefGoogle Scholar
  86. 86.
    Choy G, Choyke P, Libutti SK (2003) Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research. Mol Imaging 2: 303–312PubMedCrossRefGoogle Scholar
  87. 87.
    Tsourkas A, Shinde-Patil VR, Kelly KA, Patel P, Wolley A, Allport JR, Weissleder R (2005) In vivo imaging of activated endothelium using an anti-vcam-1 magnetooptical probe. Bioconjugate Chem 16: 576–581CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Sreekant Murthy
    • 1
  • Elisabeth Papazoglou
    • 2
  • Nandhakumar Kanagarajan
    • 1
  • Narasim S. Murthy
    • 3
  1. 1.Division of Gastroenterology and HepatologyDrexel University College of MedicinePhiladelphiaUSA
  2. 2.School of Biomedical EngineeringDrexel UniversityPhiladelphiaUSA
  3. 3.Associated Radiologists, PAHagerstownUSA

Personalised recommendations