Use of animal models of osteoarthritis in the evaluation of potential new therapeutic agents

  • Stephen A. Stimpson
  • Virginia B. Kraus
  • Bajin Han
Part of the Progress in Inflammation Research book series (PIR)


Anterior Cruciate Ligament Zoledronic Acid Osteoarthritis Cartilage Glucosamine Sulfate Cranial Cruciate Ligament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Buckwalter J (2002) The many phases of osteoarthritis: Introduction. In: VC Hascall, KE Kuettner (eds): The Many Faces of Osteoarthritis. Birkhäuser, Basel, 3–4Google Scholar
  2. 2.
    Dieppe P (2002) Assessment of joint damage in osteoarthritis: Introduction. In: VC Hascall, KE Kuettner (eds): The Many Faces of Osteoarthritis. Birkhäuser, Basel, 323–328Google Scholar
  3. 3.
    Dieppe P, Cushnaghan J, McAlindon T (1992) Epidemiology, clinical course, and outcome of knee osteoarthritis. In: KE Keuttner, R Schleyerbach, JG Peyron, VC Hascall (eds): Articular Cartilage and Osteoarthritis. Raven Press, New York, 617–627Google Scholar
  4. 4.
    Cole A, Hauselmann H, Flechtenmacher J, Huch K, Koepp H, Eger W, Aurich ME, Rolauffs B, Margulis A, Muehleman C et al (2006) Metabolic differences between knee and ankle. In: VC Hascall, KE Kuettner (eds): The Many Faces of Osteoarthritis. Birkhäuser, Basel, 27–29Google Scholar
  5. 5.
    Bendele AM, Hulman JF (1988) Spontaneous cartilage degeneration in guinea pigs. Arthritis Rheum 31: 561–565PubMedGoogle Scholar
  6. 6.
    Bendele AM (2002) Animal models of osteoarthritis in an era of molecular biology. J Musculoskelet Neuronal Interact 2: 501–503PubMedGoogle Scholar
  7. 7.
    Helminen HJ, Saamanen AM, Salminen H, Hyttinen MM (2002) Transgenic mouse models for studying the role of cartilage macromolecules in osteoarthritis. Rheumatology 41: 848–856PubMedCrossRefGoogle Scholar
  8. 8.
    Pond MJ, Nuki G (1973) Experimentally-induced osteoarthritis in the dog. Ann Rheum Dis 32: 387–388PubMedGoogle Scholar
  9. 9.
    Brandt KD (2002) Animal models of osteoarthritis. Biorheology 39: 221–235PubMedGoogle Scholar
  10. 10.
    Bendele AM (2001) Animal models of osteoarthritis. J Musculoskelet Neuronal Interact 1: 363–376PubMedGoogle Scholar
  11. 11.
    Moskowitz RW, Davis W, Sammarco J, Martens M, Baker J, Mayor M, Burstein AH, Frankel VH (1973) Experimentally induced degenerative joint lesions following partial meniscectomy in the rabbit. Arthritis Rheum 16: 397–405PubMedGoogle Scholar
  12. 12.
    Moskowitz R (1992) Experimental models in osteoarthritis. In: R Moskowitz, D Howell, V Goldberg (eds): Osteoarthritis: Diagnosis and Medical/Surgical Management. Saunders, Philadelphia, 213–232Google Scholar
  13. 13.
    Pritzker KP (1994) Animal models for osteoarthritis: processes, problems and prospects. Ann Rheum Dis 53: 406–420PubMedGoogle Scholar
  14. 14.
    Billingham MEJ (1998) Advantages afforded by the use of animal models for evaluation of potential disease-modifying osteoarthritis drugs (DMOADs). In: KD Brandt, M Doherty, LS Lohmander (eds): Osteoarthritis. Oxford Press, Oxford, 429–438Google Scholar
  15. 15.
    Doherty N, Griffiths RJ, Pettipher ER (1998) The role of animal models in the discovery of novel disease-modifying osteoarthritis drugs (DMOADs). In: KD Bradt, M Doherty, LS Lohmander (eds): Osteoarthritis. Oxford University Press, Oxford, 439–449Google Scholar
  16. 16.
    Oegema T, Visco D (1998) Animal models of osteoarthritis. In: Y An, R Friedman (eds): Animal Models in Orthopaedic Research. CRC Press, Boca Raton, 349–367Google Scholar
  17. 17.
    Reiter LA, Robinson RP, McClure KF, Jones CS, Reese MR, Mitchell PG, Otterness IG, Bliven ML, Liras J, Cortina SR (2004) Pyran-containing sulfonamide hydroxamic acids: potent MMP inhibitors that spare MMP-1. Bioorg Med Chem Lett 14: 3389–3395PubMedCrossRefGoogle Scholar
  18. 18.
    Noe MC, Natarajan V, Snow SL, Wolf-Gouveia LA, Mitchell PG, Lopresti-Morrow L, Reeves LM, Yocum SA, Otterness I, Bliven MA (2005) Discovery of 3-OH-3-methylpipecolic hydroxamates: potent orally active inhibitors of aggrecanase and MMP-13. Bioorg Med Chem Lett 15: 3385–3388PubMedCrossRefGoogle Scholar
  19. 19.
    Otterness IG, Bliven ML, Eskra JD, te Koppele JM, Stukenbrok HA, Milici AJ (2000) Cartilage damage after intraarticular exposure to collagenase 3. Osteoarthritis Cartilage 8: 366–373PubMedCrossRefGoogle Scholar
  20. 20.
    Downs JT, Lane CL, Nestor NB, McLellan TJ, Kelly MA, Karam GA, Mezes PS, Pelletier JP, Otterness IG (2001) Analysis of collagenase-cleavage of type II collagen using a neoepitope ELISA. J Immunol Methods 247: 25–34PubMedCrossRefGoogle Scholar
  21. 21.
    Diaz-Gallego L, Prieto JG, Coronel P, Gamazo LE, Gimeno M, Alvarez AI (2005) Apoptosis and nitric oxide in an experimental model of osteoarthritis in rabbit after hyaluronic acid treatment. J Orthop Res 23: 1370–1376PubMedCrossRefGoogle Scholar
  22. 22.
    Ding M, Christian DC, Hvid I (2005) Effects of hyaluronan on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Bone 36: 489–501PubMedCrossRefGoogle Scholar
  23. 23.
    Amiel D, Toyoguchi T, Kobayashi K, Bowden K, Amiel ME, Healey RM (2003) Long-term effect of sodium hyaluronate (Hyalgan) on osteoarthritis progression in a rabbit model. Osteoarthritis Cartilage 11: 636–643PubMedCrossRefGoogle Scholar
  24. 24.
    Takahashi K, Hashimoto S, Kubo T, Hirasawa Y, Lotz M, Amiel D (2001) Hyaluronan suppressed nitric oxide production in the meniscus and synovium of rabbit osteoarthritis model. J Orthop Res 19: 500–503PubMedCrossRefGoogle Scholar
  25. 25.
    Kobayashi K, Amiel M, Harwood FL, Healey RM, Sonoda M, Moriya H, Amiel D (2000) The long-term effects of hyaluronan during development of osteoarthritis following partial meniscectomy in a rabbit model. Osteoarthritis Cartilage 8: 359–365PubMedCrossRefGoogle Scholar
  26. 26.
    Williams JM, Plaza V, Hui F, Wen C, Kuettner KE, Homandberg GA (1997) Hyaluronic acid suppresses fibronectin fragment mediated cartilage chondrolysis: II. In vivo. Osteoarthritis Cartilage 5: 235–240CrossRefGoogle Scholar
  27. 27.
    Otterness IG, Eskra JD, Bliven ML, Shay AK, Pelletier JP, Milici AJ (1998) Exercise protects against articular cartilage degeneration in the hamster. Arthritis Rheum 41:2068–2076PubMedCrossRefGoogle Scholar
  28. 28.
    Uebelhart D, Thonar EJ, Zhang J, Williams JM (1998) Protective effect of exogenous chondroitin 4,6-sulfate in the acute degradation of articular cartilage in the rabbit. Osteoarthritis Cartilage 6(Suppl. A): 6–13PubMedGoogle Scholar
  29. 29.
    Hongbin W, Jingyuan D, Linyun C, Yuming D (2004) Carboxymethylated chitin reduces MMP-1 expression in rabbit ACLT osteoarthritic cartilage. Ann Rheum Dis 63:369–372PubMedCrossRefGoogle Scholar
  30. 30.
    Kobayashi T, Notoya K, Nakamura A, Akimoto K (2005) Fursultiamine, a vitamin B1 derivative, enhances chondroprotective effects of glucosamine hydrochloride and chondroitin sulfate in rabbit experimental osteoarthritis. Inflamm Res 54: 249–255PubMedCrossRefGoogle Scholar
  31. 31.
    Tiraloche G, Girard C, Chouinard L, Sampalis J, Moquin L, Ionescu M, Reiner A, Poole AR, Laverty S (2005) Effect of oral glucosamine on cartilage degradation in a rabbit model of osteoarthritis. Arthritis Rheum 52: 1118–1128PubMedCrossRefGoogle Scholar
  32. 32.
    Lippiello L, Woodward J, Karpman R, Hammad TA (2000) In vivo chondroprotection and metabolic synergy of glucosamine and chondroitin sulfate. Clin Orthop Relat Res (381): 229–240PubMedCrossRefGoogle Scholar
  33. 33.
    Kraus VB, Huebner JL, Stabler T, Flahiff CM, Setton LA, Fink C, Vilim V, Clark AG (2004) Ascorbic acid increases the severity of spontaneous knee osteoarthritis in a guinea pig model. Arthritis Rheum 50: 1822–1831PubMedCrossRefGoogle Scholar
  34. 34.
    Kurz B, Jost B, Schunke M (2002) Dietary vitamins and selenium diminish the development of mechanically induced osteoarthritis and increase the expression of antioxidative enzymes in the knee joint of STR/1N mice. Osteoarthritis Cartilage 10: 119–126PubMedCrossRefGoogle Scholar
  35. 35.
    Deparle LA, Gupta RC, Canerdy TD, Goad JT, D’Altilio M, Bagchi M, Bagchi D (2005) Efficacy and safety of glycosylated undenatured type-II collagen (UC-II) in therapy of arthritic dogs. J Vet Pharmacol Ther 28: 385–390PubMedCrossRefGoogle Scholar
  36. 36.
    Christgau S, Tanko LB, Cloos PA, Mouritzen U, Christiansen C, Delaisse JM, Hoegh-Andersen P (2004) Suppression of elevated cartilage turnover in postmenopausal women and in ovariectomized rats by estrogen and a selective estrogen-receptor modulator (SERM). Menopause 11: 508–518PubMedCrossRefGoogle Scholar
  37. 37.
    Moore EE, Bendele AM, Thompson DL, Littau A, Waggie KS, Reardon B, Ellsworth JL (2005) Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis. Osteoarthritis Cartilage 13: 623–631PubMedCrossRefGoogle Scholar
  38. 38.
    Nishida T, Kubota S, Kojima S, Kuboki T, Nakao K, Kushibiki T, Tabata Y, Takigawa M (2004) Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). J Bone Miner Res 19: 1308–1319PubMedCrossRefGoogle Scholar
  39. 39.
    Scharstuhl A, Glansbeek HL, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB (2002) Inhibition of endogenous TGF-beta during experimental osteoarthritis prevents osteophyte formation and impairs cartilage repair. J Immunol 169: 507–514PubMedGoogle Scholar
  40. 40.
    Pelletier JP, Caron JP, Evans C, Robbins PD, Georgescu HI, Jovanovic D, Fernandes JC, Martel-Pelletier J (1997) In vivo suppression of early experimental osteoarthritis by interleukin-1 receptor antagonist using gene therapy. Arthritis Rheum 40: 1012–1019PubMedGoogle Scholar
  41. 41.
    Caron JP, Fernandes JC, Martel-Pelletier J, Tardif G, Mineau F, Geng C, Pelletier JP (1996) Chondroprotective effect of intraarticular injections of interleukin-1 receptor antagonist in experimental osteoarthritis. Suppression of collagenase-1 expression. Arthritis Rheum 39: 1535–1544PubMedGoogle Scholar
  42. 42.
    Fernandes J, Tardif G, Martel-Pelletier J, Lascau-Coman V, Dupuis M, Moldovan F, Sheppard M, Krishnan BR, Pelletier JP (1999) In vivo transfer of interleukin-1 receptor antagonist gene in osteoarthritic rabbit knee joints: prevention of osteoarthritis progression. Am J Pathol 154: 1159–1169PubMedGoogle Scholar
  43. 43.
    Moreau M, Dupuis J, Bonneau NH, Lecuyer M (2004) Clinical evaluation of a powder of quality elk velvet antler for the treatment of osteoarthrosis in dogs. Can Vet J 45:133–139PubMedGoogle Scholar
  44. 44.
    Innes JF, Fuller CJ, Grover ER, Kelly AL, Burn JF (2003) Randomised, double-blind, placebo-controlled parallel group study of P54FP for the treatment of dogs with osteoarthritis. Vet Rec 152: 457–460PubMedGoogle Scholar
  45. 45.
    Innes JF, Barr AR, Sharif M (2000) Efficacy of oral calcium pentosan polysulphate for the treatment of osteoarthritis of the canine stifle joint secondary to cranial cruciate ligament deficiency. Vet Rec 146: 433–437PubMedGoogle Scholar
  46. 46.
    Read RA, Cullis-Hill D, Jones MP (1996) Systemic use of pentosan polysulphate in the treatment of osteoarthritis. J Small Animal Pract 37: 108–114CrossRefGoogle Scholar
  47. 47.
    Brandt KD, Smith G, Kang SY, Myers S, O’Connor B, Albrecht M (1997) Effects of diacerhein in an accelerated canine model of osteoarthritis. Osteoarthritis Cartilage 5:438–449PubMedCrossRefGoogle Scholar
  48. 48.
    Clemmons DR, Busby WH Jr, Garmong A, Schultz DR, Howell DS, Altman RD, Karr R (2002) Inhibition of insulin-like growth factor binding protein 5 proteolysis in articular cartilage and joint fluid results in enhanced concentrations of insulin-like growth factor 1 and is associated with improved osteoarthritis. Arthritis Rheum 46: 694–703PubMedCrossRefGoogle Scholar
  49. 49.
    El Hajjaji H, Williams JM, Devogelaer JP, Lenz ME, Thonar EJ, Manicourt DH (2004) Treatment with calcitonin prevents the net loss of collagen, hyaluronan and proteoglycan aggregates from cartilage in the early stages of canine experimental osteoarthritis. Osteoarthritis Cartilage 12: 904–911PubMedCrossRefGoogle Scholar
  50. 50.
    Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J, Rodan GA, Duong IT (2004) The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 50: 1193–1206PubMedCrossRefGoogle Scholar
  51. 51.
    Muehleman C, Green J, Williams JM, Kuettner KE, Thonar EJ, Sumner DR (2002) The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage. Osteoarthritis Cartilage 10: 226–233PubMedCrossRefGoogle Scholar
  52. 52.
    Myers SL, Brandt KD, Burr DB, O’Connor BL, Albrecht M (1999) Effects of a bisphosphonate on bone histomorphometry and dynamics in the canine cruciate deficiency model of osteoarthritis. J Rheumatol 26: 2645–2653PubMedGoogle Scholar
  53. 53.
    Sessions JK, Reynolds LR, Budsberg SC (2005) In vivo effects of carprofen, deracoxib, and etodolac on prostanoid production in blood, gastric mucosa, and synovial fluid in dogs with chronic osteoarthritis. Am J Vet Res 66: 812–817PubMedCrossRefGoogle Scholar
  54. 54.
    Pelletier JP, Lajeunesse D, Jovanovic DV, Lascau-Coman V, Jolicoeur FC, Hilal G, Fernandes JC, Martel-Pelletier J (2000) Carprofen simultaneously reduces progression of morphological changes in cartilage and subchondral bone in experimental dog osteoarthritis. J Rheumatol 27: 2893–2902PubMedGoogle Scholar
  55. 55.
    Peterson KD, Keefe TJ (2004) Effects of meloxicam on severity of lameness and other clinical signs of osteoarthritis in dogs. J Am Vet Med Assoc 225: 1056–1060PubMedCrossRefGoogle Scholar
  56. 56.
    Pelletier JP, Boileau C, Brunet J, Boily M, Lajeunesse D, Reboul P, Laufer S, Martel-Pelletier J (2004) The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. Bone 34: 527–538PubMedCrossRefGoogle Scholar
  57. 57.
    Boileau C, Martel-Pelletier J, Jouzeau JY, Netter P, Moldovan F, Laufer S, Tries S, Pelletier JP (2002) Licofelone (ML-3000), a dual inhibitor of 5-lipoxygenase and cyclooxygenase, reduces the level of cartilage chondrocyte death in vivo in experimental dog osteoarthritis: inhibition of pro-apoptotic factors. J Rheumatol 29: 1446–1453PubMedGoogle Scholar
  58. 58.
    Jovanovic DV, Fernandes JC, Martel-Pelletier J, Jolicoeur FC, Reboul P, Laufer S, Tries S, Pelletier JP (2001) In vivo dual inhibition of cyclooxygenase and lipoxygenase by ML-3000 reduces the progression of experimental osteoarthritis: suppression of collagenase 1 and interleukin-1beta synthesis. Arthritis Rheum 44: 2320–2330PubMedCrossRefGoogle Scholar
  59. 59.
    Fernandes JC, Martel-Pelletier J, Jovanovic D, Tardif G, DiBattista JA, Lascau-Coman V, Otterness IG, Pelletier JP (1998) The effects of tenidap on canine experimental osteoarthritis: II. Study of the expression of collagenase-1 and interleukin 1beta by in situ hybridization. J Rheumatol 25: 951–958PubMedGoogle Scholar
  60. 60.
    Sabatini M, Lesur C, Thomas M, Chomel A, Anract P, de Nanteuil G, Pastoureau P (2005) Effect of inhibition of matrix metalloproteinases on cartilage loss in vitro and in a guinea pig model of osteoarthritis. Arthritis Rheum 52: 171–180PubMedCrossRefGoogle Scholar
  61. 61.
    Aranapakam V, Davis JM, Grosu GT, Baker J, Ellingboe J, Zask A, Levin JI, Sandanayaka VP, Du M, Skotnicki JS et al (2003) Synthesis and structure-activity relationship of N-substituted 4-arylsulfonylpiperidine-4-hydroxamic acids as novel, orally active matrix metalloproteinase inhibitors for the treatment of osteoarthritis. J Med Chem 46: 2376–2396PubMedCrossRefGoogle Scholar
  62. 62.
    Janusz MJ, Bendele AM, Brown KK, Taiwo YO, Hsieh L, Heitmeyer SA (2002) Induction of osteoarthritis in the rat by surgical tear of the meniscus: Inhibition of joint damage by a matrix metalloproteinase inhibitor [erratum appears in Osteoarthritis Cartilage 2002 Nov;10(1):905]. Osteoarthritis Cartilage 10: 785–791PubMedCrossRefGoogle Scholar
  63. 63.
    Natchus MG, Bookland RG, De B, Almstead NG, Pikul S, Janusz MJ, Heitmeyer SA, Hookfin EB, Hsieh LC, Dowty ME et al (2000) Development of new hydroxamate matrix metalloproteinase inhibitors derived from functionalized 4-aminoprolines. J Med Chem 43: 4948–4963PubMedCrossRefGoogle Scholar
  64. 64.
    Jauernig S, Schweighauser A, Reist M, Von Rechenberg B, Schawalder P, Spreng D (2001) The effects of doxycycline on nitric oxide and stromelysin production in dogs with cranial cruciate ligament rupture. Vet Surg 30: 132–139PubMedCrossRefGoogle Scholar
  65. 65.
    de Bri E, Lei W, Svensson O, Chowdhury M, Moak SA, Greenwald RA (1998) Effect of an inhibitor of matrix metalloproteinases on spontaneous osteoarthritis in guinea pigs. Adv Dent Res 12: 82–85PubMedCrossRefGoogle Scholar
  66. 66.
    Yu LP, Jr., Burr DB, Brandt KD, O’Connor BL, Rubinow A, Albrecht M (1996) Effects of oral doxycycline administration on histomorphometry and dynamics of subchondral bone in a canine model of osteoarthritis. J Rheumatol 23: 137–142PubMedGoogle Scholar
  67. 67.
    Yu LP Jr, Smith GN, Jr., Brandt KD, Myers SL, O’Connor BL, Brandt DA (1992) Reduction of the severity of canine osteoarthritis by prophylactic treatment with oral doxycycline. Arthritis Rheum 35: 1150–1159PubMedGoogle Scholar
  68. 68.
    Brewster M, Lewis EJ, Wilson KL, Greenham AK, Bottomley KM (1998) Ro 32-3555, an orally active collagenase selective inhibitor, prevents structural damage in the STR/ORT mouse model of osteoarthritis. Arthritis Rheum 41: 1639–1644PubMedCrossRefGoogle Scholar
  69. 69.
    Lewis EJ, Bishop J, Bottomley KM, Bradshaw D, Brewster M, Broadhurst MJ, Brown PA, Budd JM, Elliott L, Greenham AK et al (1997) Ro 32-3555, an orally active collagenase inhibitor, prevents cartilage breakdown in vitro and in vivo. Br J Pharmacol 121:540–546PubMedCrossRefGoogle Scholar
  70. 70.
    Pelletier JP, Lascau-Coman V, Jovanovic D, Fernandes JC, Manning P, Connor JR, Currie MG, Martel-Pelletier J (1999) Selective inhibition of inducible nitric oxide synthase in experimental osteoarthritis is associated with reduction in tissue levels of catabolic factors. J Rheumatol 26: 2002–2014PubMedGoogle Scholar
  71. 71.
    Pelletier J, Jovanovic D, Fernandes JC, Manning P, Connor JR, Currie MG, Martel-Pelletier J (1999) Reduction in the structural changes of experimental osteoarthritis by a nitric oxide inhibitor. Osteoarthritis Cartilage 7: 416–418PubMedCrossRefGoogle Scholar
  72. 72.
    Pelletier JP, Jovanovic D, Fernandes JC, Manning P, Connor JR, Currie MG, Di Battista JA, Martel-Pelletier J (1998) Reduced progression of experimental osteoarthritis in vivo by selective inhibition of inducible nitric oxide synthase. Arthritis Rheum 41:1275–1286PubMedCrossRefGoogle Scholar
  73. 73.
    Yamada H, Watanabe K, Saito T, Hayashi H, Niitani Y, Kikuchi T, Ito A, Fujikawa K, Lohmander LS (1999) Esculetin (dihydroxycoumarin) inhibits the production of matrix metalloproteinases in cartilage explants, and oral administration of its prodrug, CPA-926, suppresses cartilage destruction in rabbit experimental osteoarthritis. J Rheumatol 26: 654–662PubMedGoogle Scholar
  74. 74.
    Neidel J, Schroers B, Sintermann F (1998) The effects of high-dose methotrexate on the development of cartilage lesions in a lapine model of osteoarthrosis. Arch Orthop Trauma Surg 117: 265–269PubMedCrossRefGoogle Scholar
  75. 75.
    Boileau C, Martel-Pelletier J, Brunet J, Tardif G, Schrier D, Flory C, El Kattan A, Boily M, Pelletier JP (2005) Oral treatment with PD-0200347, an alpha2delta ligand, reduces the development of experimental osteoarthritis by inhibiting metalloproteinases and inducible nitric oxide synthase gene expression and synthesis in cartilage chondrocytes. Arthritis Rheum 52: 488–500PubMedCrossRefGoogle Scholar
  76. 76.
    Rudolphi K, Gerwin N, Verzijl N, van der Kraan P, van den Berg W (2003) Pralnacasan, an inhibitor of interleukin-1beta converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 11: 738–746PubMedCrossRefGoogle Scholar
  77. 77.
    Pelletier JP, Fernandes JC, Brunet J, Moldovan F, Schrier D, Flory C, Martel-Pelletier J (2003) In vivo selective inhibition of mitogen-activated protein kinase kinase 1/2 in rabbit experimental osteoarthritis is associated with a reduction in the development of structural changes. Arthritis Rheum 48: 1582–1593PubMedCrossRefGoogle Scholar
  78. 78.
    Kobayashi T, Notoya K, Naito T, Unno S, Nakamura A, Martel-Pelletier J, Pelletier JP (2005) Pioglitazone, a peroxisome proliferator-activated receptor gamma agonist, reduces the progression of experimental osteoarthritis in guinea pigs. Arthritis Rheum 52: 479–487PubMedCrossRefGoogle Scholar
  79. 79.
    Brandt KD, Mazzuca SA (2005) Lessons learned from nine clinical trials of disease-modifying osteoarthritis drugs. Arthritis Rheum 52: 3349–3359PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2006

Authors and Affiliations

  • Stephen A. Stimpson
    • 1
  • Virginia B. Kraus
    • 2
  • Bajin Han
    • 1
  1. 1.GlaxoSmithKlineResearch Triangle ParkUSA
  2. 2.Duke University Medical CenterDurhamUSA

Personalised recommendations