The resolution of airway inflammation in asthma and chronic obstructive pulmonary disease

  • Garry M. Walsh
  • Catherine M. McDougall
Part of the Progress in Inflammation Research book series (PIR)


Asthma is now one of the most common chronic diseases in westernised countries and is characterised by reversible airway obstruction, bronchial hyperresponsiveness and airway inflammation. Key pathological features include: infiltration of the airways by activated lymphocytes and eosinophils; damage to, and loss of, the bronchial epithelium; mast cell degranulation; mucous gland hyperplasia; and collagen deposition in the epithelial sub-basement membrane area. Asthma pathology is associated with the release of myriad pro-inflammatory substances including lipid mediators, inflammatory peptides, chemokines, cytokines, and growth factors. In addition to infiltrating leukocytes, structural cells in the airways, including smooth muscle cells, endothelial cells, fibroblasts and airway epithelial cells, are all important sources of asthma-causing or -enhancing mediators [1]. This complex scenario means that potential targets for therapeutic intervention are many and varied and the task of successful therapy a challenging one.


Chronic Obstructive Pulmonary Disease Airway Inflammation Severe Asthma Airway Smooth Muscle Allergy Clin Immunol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Busse WW, Lemanske RF Jr (2001) Asthma. N Engl J Med 344: 350–362PubMedGoogle Scholar
  2. 2.
    Holtzman MJ (2003) Drug development for asthma. Am J Respir Cell Mol Biol 29: 163–171PubMedGoogle Scholar
  3. 3.
    Leung DYM, de Castro M, Szefler SJ, Chrousos GP (1998) Mechanisms of glucocorticoids-resistant asthma. Ann NY Acad Sci 840: 1567–1574Google Scholar
  4. 4.
    Adcock IM, Lane SJ (2003) Corticosteroid-insensitive asthma: Molecular mechanisms. J Endocrinol 178: 347–355PubMedGoogle Scholar
  5. 5.
    Celli BR, MacNee W (2004) ATS/ERS Task Force Standards for the diagnosis and treatment of patients with COPD: A summary of the ATS/ERS position paper. Eur Respir J 23: 932–946PubMedGoogle Scholar
  6. 6.
    Jeffery PK (1998) Structural and inflammatory changes in COPD: A comparison with asthma. Thorax 53: 129–136PubMedGoogle Scholar
  7. 7.
    Calverley P, Pauwels R, Vestbo J, Jones P, Pride N, Gulsvik A, Anderson J, Maden C (2003) Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: A randomised controlled trial. Lancet 361: 449–456PubMedGoogle Scholar
  8. 8.
    Barnes PJ, Ito K, Adcock IM (2004) Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. Lancet 363: 731–733PubMedGoogle Scholar
  9. 9.
    Ito K, Barnes PJ, Adcock IM (2000) Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1β-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol 18: 6891–6903Google Scholar
  10. 10.
    Adcock IM, Kazuhiro I (2005) Glucocorticoid pathways in chronic obstructive pulmonary disease therapy. Proc Am Thorac Soc 2: 313–319PubMedGoogle Scholar
  11. 11.
    Barnes PJ, Adcock IM, Ito K (2005) Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J 25: 552–563PubMedGoogle Scholar
  12. 12.
    Weinbrenner A, Huneke D, Zschiesche M, Engle G, Timmer W, Steinijans VW (2002) Circadian rhythm of serum cortisol after repeated inhalation of the new topical steroid ciclesonide J Clin Endocrinol Metab 87: 2160PubMedGoogle Scholar
  13. 13.
    Taylor DA, Jensen MW, Kanabar V, Engelstatter R, Steinijans VW, Barnes PJ, O’Connor BJ (1999) A dose-dependent effect of the novel inhaled corticosteroid ciclesonide on airway responsiveness to adenosine-5’-monophosphate in asthmatic patients. Am J Respir Crit Care Med 160: 237PubMedGoogle Scholar
  14. 14.
    Larsen BB, Nielsen LP, Engelstatter R, Steinijans V, Dahl R (2003) Effect of ciclesonide on allergen challenge in subjects with bronchial asthma. Allergy 58: 207PubMedGoogle Scholar
  15. 15.
    Gauvreau GM, Boulet LP, Postma DS, Kawayama T, Watson RM, Duong M, Deschesnes F, De Monchy JG, O’Byrne PM (2005) Effect of low-dose ciclesonide on allergen-induced responses in subjects with mild allergic asthma. J Allergy Clin Immunol 116: 285PubMedGoogle Scholar
  16. 16.
    Chapman KR, Patel P, D’Urzo AD, Alexander M, Mehra S, Oedekoven C, Engelsatter R, Boulet LP (2005) Maintenance of asthma control by once-daily inhaled ciclesonide in adults with persistent asthm.a Allergy 60: 330PubMedGoogle Scholar
  17. 17.
    Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci 94: 557–752PubMedGoogle Scholar
  18. 18.
    Vayssiere BM, Dupont S, Choquart A, Petit F, Garcia T, Marchandeau C, Gronemeyer H, Resche-Rigon M (1997) Synthetic glucocorticoids that dissociate transactivation and AP-1 transrepression exhibit anti-inflammatory activity in vivo. Mol Endocrinol 11: 1245–1255PubMedGoogle Scholar
  19. 19.
    Barnes PJ (2000) New treatments for asthma. Eur J Int Med 11: 9–20Google Scholar
  20. 20.
    Drazen JM, Israel E, O’Byrne PM (1999) Treatment of asthma with drugs modifying the leukotriene pathway. N Engl J Med 340: 197–206PubMedGoogle Scholar
  21. 21.
    Lipworth BJ (1999) Leukotriene-receptor antagonists. Lancet 353: 57–62PubMedGoogle Scholar
  22. 22.
    Dahlen S-E (2001) 5-lipoxygenase inhibitors. In: TT Hansel, PJ Barnes (eds): New drugs for asthma, allergy and COPD. Karger, Basel, 115–120Google Scholar
  23. 23.
    Martin RJ, Cicutto LC, Smith HR, Ballard RD, Szefler SJ (1991) Airways inflammation in nocturnal asthma. Am Rev Respir Dis 143: 351–357PubMedGoogle Scholar
  24. 24.
    Fahy JV, Kim KW, Liu J, Boushey HA (1995) Prominent neutrophilic inflammation in sputum from subjects with asthma exacerbation. J Allergy Clin Immunol 95: 843–852PubMedGoogle Scholar
  25. 25.
    Ordonez CL, Shaughnessy TE, Matthay MA, Fahy JV (2000) Increased neutrophil numbers and IL-8 levels in airway secretions in acute severe asthma: Clinical and biologic significance. Am J Respir Crit Care Med 161: 1185–1190PubMedGoogle Scholar
  26. 26.
    Sur S, Crotty TB, Kephart GM, Hyma BA, Colby TV, Reed CE, Hunt LW, Gleich GJ (1993) Sudden-onset fatal asthma: A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am Rev Respir Dis 148: 713–719PubMedGoogle Scholar
  27. 27.
    Jennewein HM, Anderskewitz R, Meade CJ, Pairet M, Birke F (2001) LTB4 antagonism. In TT Hansel, PJ Barnes (eds): New drugs for asthma, allergy and COPD. Karger, Basel: Karger, 121–125Google Scholar
  28. 28.
    Gompertz S, Stockley RA (2002) A randomized, placebo-controlled trial of a leukotriene synthesis inhibitor in patients with COPD. Chest 122: 289–294PubMedGoogle Scholar
  29. 29.
    Groenke L, Beeh KM, Wang JH, Kornmann O, Beier J, Cameron R, Brauburger J, Holz MO, Joerres RA, Shaw M et al (2002) LTB 019A, a leukotriene B4 receptor antagonist, has no effect on the levels of neutrophils, MPO, IL-8 and TNF-alpha in induced sputum of patients with COPD. Am J Respir Crit Care Med 165: A225Google Scholar
  30. 30.
    Torphy TJ, Compton CH, Marks MJ, Sturton G (2001) Phosphodiesterase 4 inhibitors. In: TT Hansel, PJ Barnes (eds): New drugs for asthma, allergy and COPD. Karger, Basel, 321–325Google Scholar
  31. 31.
    Souness JE, Aldous D, Sargent C (2000) Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. Immunopharmacology 47: 127PubMedGoogle Scholar
  32. 32.
    Torphy TJ (1998) Phosphodiesterase isozymes: molecular targets for novel anti-asthma agents. Phosphodiesterase isozymes: Molecular targets for novel anti-asthma agents. Am J Respir Crit Care Med 157: 351–370PubMedGoogle Scholar
  33. 33.
    Spond J, Chapman R, Fine J, Jones H, Kreutner W, Kung TT, Minnicozzi M (2001) Comparison of PDE 4 inhibitors, rolipram and SB 207499 (ariflo), in a rat model of pulmonary neutrophilia. Pulm Pharmacol Ther 14: 157PubMedGoogle Scholar
  34. 34.
    Wollin L, Bundschuh DS, Wohlsen A, Marx D, Beume R (2006) Inhibition of airway hyperresponsiveness and pulmonary inflammation by roflumilast and other PDE4 inhibitors. Pulm Pharmacol Ther 19: 343–352PubMedGoogle Scholar
  35. 35.
    Compton CH, Gubb J, Nieman R, Edelson J, Amit O, Bakst A, Ayres JG, Creemers JP, Schultze-Werninghaus G, Brambilla C, Barnes NC (2001) Cilomilast, a selective phosphodiesterase-4 inhibitor for treatment of patients with chronic obstructive pulmonary disease: A randomised, dose-ranging study. Lancet 358: 265PubMedGoogle Scholar
  36. 36.
    Barnes PJ (1999) Novel approaches and targets for treatment of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160: S72–79PubMedGoogle Scholar
  37. 37.
    Hiemstra PS, van Wetering S, Stolk J (1998) Neutrophil serine proteinases and defensins in chronic obstructive pulmonary disease: Effects on pulmonary epithelium. Eur Respir J 12: 1200–1208PubMedGoogle Scholar
  38. 38.
    Blease K, Lewis A, Raymon HK (2003) Emerging treatments for asthma. Expert Opin Emerg Drugs 8: 71PubMedGoogle Scholar
  39. 39.
    Varney VA, Hamid QA, Gaga M (1993) Influence of grass pollen immunotherapy on cellular infiltration and cytokine mRNA expression during allergen-induced late-phase cutaneous responses. J Clin Invest 92: 644PubMedGoogle Scholar
  40. 40.
    Kay AB (2003) Immunomodulation in asthma: mechanisms and possible pitfalls. Curr Opin Pharmacol 3: 220PubMedGoogle Scholar
  41. 41.
    Jain VV, Businga TR, Kitagaki K, George CL, O’Shaughnessy PT, Kline JN (2003) Mucosal immunotherapy with CpG oligodeoxynucleotides reverses a murine model of chronic asthma induced by repeated antigen exposure. Am J Physiol Lung Cell Mol Physiol 285: L1137PubMedGoogle Scholar
  42. 42.
    Oldfield WL, Larche M, Kay AB (2002) Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: A randomised controlled trial. Lancet 360: 47PubMedGoogle Scholar
  43. 43.
    Alexander C, Tarzi M, Larché M, Kay AB (2005) The effect of Fel d 1-derived T-cell peptides on upper and lower airway outcome measurements in cat-allergic subjects. Allergy 60: 1269PubMedGoogle Scholar
  44. 44.
    Chung KF (2001) Cytokines in chronic obstructive pulmonary disease. Eur Respir J (Suppl) 34: 50s–59sGoogle Scholar
  45. 45.
    Barnes PJ (2003) Cytokine-directed therapies for the treatment of chronic airway diseases. Cytokine Growth Factor Rev 14: 511PubMedGoogle Scholar
  46. 46.
    Chung KF, Barnes PJ (1999) Cytokines in asthma. Thorax 54: 825–57PubMedGoogle Scholar
  47. 47.
    Walsh GM (1999) Advances in the immunobiology of eosinophils and their role in disease. Crit Rev Clin Lab Sci 36: 453PubMedGoogle Scholar
  48. 48.
    Egan RW, Umland SP, Cuss FM, Chapman RW (1996) Biology of interleukin-5 and its relevance to allergic disease. Allergy 51: 71–81PubMedGoogle Scholar
  49. 49.
    Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Conner BJ, Walls CM, Mathur AK, Cowley HC, Chung KF, Djukanovic R et al (2000) Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyperresponsiveness and the late asthmatic response. Lancet 356: 2144–2148PubMedGoogle Scholar
  50. 50.
    O’Byrne PM, Inman MD, Parameswaran K (2001) The trials and tribulations of IL-5, eosinophils and allergic asthma. J Allergy Clin Immunol 108: 503–508PubMedGoogle Scholar
  51. 51.
    Lipwoth BJ (2001) Eosinophils and airway hyper-responsiveness. Lancet 357: 1446Google Scholar
  52. 52.
    Flood-Page PT, Menzies-Gow AN, Kay AB, Robinson D (2003) Eosinophil’s role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway. Am J Respir Crit Care Med 167: 199PubMedGoogle Scholar
  53. 53.
    Kips JC, O’Conner BJ, Langley SJ, Woodcock A, Kerstjens HAM, Postma DS, Danzig M, Cuss F, Pauwels RA (2003) Effect of SCH55700, a humanised anti-human interleukin-5 antibody in severe persistent asthma — A pilot study. Am J Respir Crit Care Med 167: 1655–1659PubMedGoogle Scholar
  54. 54.
    Morokata T, Ida K, Yamada T (2002) Characterization of YM-90709 as a novel antagonist which inhibits the binding of interleukin-5 to interleukin-5 receptor. Int Immunopharmacol 2: 1693–1702PubMedGoogle Scholar
  55. 55.
    Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O’Neill KR, Protheroe C, Pero R, Nguyen T, Cormier SA et al (2004) Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305: 1773PubMedGoogle Scholar
  56. 56.
    Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, Ghiran S, Gerard NP, Yu C, Orkin SH et al (2004) A critical role for eosinophils in allergic airways remodelling. Science 305: 1776PubMedGoogle Scholar
  57. 57.
    Wenzel SE, Schwartz LB, Langmac EL, Halliday JL, Trudeau JB, Gibbs RL, Chu HW (1999) Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med 160: 1001–1008PubMedGoogle Scholar
  58. 58.
    Balzar S, Chu HW, Silkoff P, Cundall M, Trudeau JB, Strand M, Wenzel S (2005) Increased TGF-beta2 in severe asthma with eosinophilia. J Allergy Clin Immunol 115: 110PubMedGoogle Scholar
  59. 59.
    Flood-Page P, Menzies-Gow A, Phipps S, Ying S, Wangoo A, Ludwig MS, Barnes N, Robinson D, Kay AB (2003) Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 112: 1029–36PubMedGoogle Scholar
  60. 60.
    Kay AB (2003) Eosinophils and IL-5 — The debate continues. Am J Respir Crit Care Med 167: 1586PubMedGoogle Scholar
  61. 61.
    Domachowske JB, Bonville CA, Easton AJ, Rosenberg HF (2002) Pulmonary eosinophilia in mice devoid of interleukin 5. J Leukoc Biol 71: 966PubMedGoogle Scholar
  62. 62.
    Jiang H, Harris MB, Rothman P (2000) IL-4/IL-13 signalling beyond JAK/STAT. J Allergy Clin Immunol 105: 1063–1070PubMedGoogle Scholar
  63. 63.
    Borish LC, Nelson HS, Lanz MJ, Claussen L, Whitmore JB, Agosti JM, Garrison L (1999) Interleukin-4 receptor in moderate atopic asthma. A phase I/II randomized, placebo-controlled trial. Am J Respir Crit Care Med 160: 1816–1823PubMedGoogle Scholar
  64. 64.
    Kroegel C, Julius P, Matthys H, Virchow JC Jr, Luttmann W (1996) Endobronchial secretion of interleukin-13 following local allergen challenge in atopic asthma: Relationship to interleukin-4 and eosinophil counts. Eur Respir J 9: 899–904PubMedGoogle Scholar
  65. 65.
    Humbert M, Durham SR, Kimmitt P Powell N, Assoufi B, Pfister R, Menz G, Kay AB, Corrigan CJ (1997) Elevated expression of messenger ribonucleic acid encoding IL-13 in the bronchial mucosa of atopic and nonatopic subjects with asthma. J Allergy Clin Immunol 99: 657–665PubMedGoogle Scholar
  66. 66.
    Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282: 2261–2282PubMedGoogle Scholar
  67. 67.
    Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD (1998) Interleukin-13: Central mediator of allergic asthma. Science 282: 2258–2260PubMedGoogle Scholar
  68. 68.
    Hahn C, Teufel M, Herz U, Renz H, Erb KJ, Wohlleben G, Brocker EB, Duschl A, Sebald W, Grunewald SM (2003) Inhibition of the IL-4/IL-13 receptor system prevents allergic sensitization without affecting established allergy in a mouse model for allergic asthma J Allergy Clin Immunol 111: 1361–1369PubMedGoogle Scholar
  69. 69.
    Shimbara A, Christodoulopoulos P, Soussi-Gounni A, Olivenstein R, Nakamura Y, Levitt RC, Nicolaides NC, Holroyd KJ, Tsicopoulos A, Lafitte JJ et al (2000) IL-9 and its receptor in allergic and nonallergic lung disease: Increased expression in asthma. J Allergy Clin Immunol 105: 108–115PubMedGoogle Scholar
  70. 70.
    Gounni AS, Gregory B, Nutku E, Aris F, Latifa K, Minshall E, North J, Tavernier J, Levit R, Nicolaides N et al (2000) Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood 96: 2163PubMedGoogle Scholar
  71. 71.
    Temann UA, Ray P, Flavell RA (2002) Pulmonary overexpression of IL-9 induces Th2cytokine expression, leading to immune pathology. J Clin Invest 109: 29–39PubMedGoogle Scholar
  72. 72.
    Zhou Y, McLane M, Levitt RC (2001) Interleukin-9 as a therapeutic target for asthma. Respir Res 2: 80–84PubMedGoogle Scholar
  73. 73.
    Keatings VM, Collins PD, Scott DM, Barnes PJ (1996) Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 153: 530PubMedGoogle Scholar
  74. 74.
    Siddiqui MA, Scott LJ (2005) Infliximab: a review of its use in Crohn’s disease and rheumatoid arthritis. Drugs 65: 2179–2208PubMedGoogle Scholar
  75. 75.
    Markham A, Lamb HM (2000) Infliximab: a review of its use in the management of rheumatoid arthritis. Drugs 59: 1341PubMedGoogle Scholar
  76. 76.
    Barlaam B, Bird TG, Lambert-Van der Brempt C, Campbell D, Foster SJ, Maciewicz R (1999) New alpha-substituted succinate-based hydroxamic acids as TNFalpha conver-tase inhibitors. J Med Chem 42: 4890PubMedGoogle Scholar
  77. 77.
    Rabinowitz MH, Andrews RC, Becherer JD, Bickett, DM, Bubacz DG, Conway JG, Cowan DJ, Gaul M, Glennon K, Lambert et al (2001) Design of selective and soluble inhibitors of tumor necrosis factor-alpha converting enzyme (TACE). J Med Chem 44: 425Google Scholar
  78. 78.
    John M, Lim S, Seybold J, Robichaud A, O’Connor B, Barnes PJ, Chung KF (1998) Inhaled corticosteroids increase IL-10 but reduce MIP-1α, GM-CSF and IFN-γ release from alveolar macrophages in asthma. Am J Respir Crit Care Med 157: 256–26PubMedGoogle Scholar
  79. 79.
    Borish L, Aarons J, Rumbyrt P, Cvietusa, J, Negri S, Wenzel SE (1996) Interleukin-10 regulation in normal subjects and patients with asthma. J Allergy Clin Immunol 97: 1288–1296PubMedGoogle Scholar
  80. 80.
    Hawrylowicz CM, O’Garra A (2005) Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol 5: 271PubMedGoogle Scholar
  81. 81.
    Fedorak RN, Gangl A, Elson CO, Rutgeerts P, Schreiber S, Wild G, Hanauer SB, Kilian A, Cohard M, LeBeaut A, Feagan B (2000) Recombinant human interleukin 10 in the treatment of patients with mild to moderately active Crohn’s disease. Gastroenterology 119: 1473–1482PubMedGoogle Scholar
  82. 82.
    Matsumoto K, Inoue H, Tsuda M, Honda Y, Kibe A, Machida K, Yoshiura Y, Nakanishi Y (2005) Different roles of interleukin-10 in onset and resolution of asthmatic responses in allergen-challenged mice. Respirology 10: 18PubMedGoogle Scholar
  83. 83.
    Takanashi S, Hasegawa Y, Kanehira Y, Yamamoto K, Fujimoto K, Satoh K, Okamura K (1999) Interleukin-10 level in sputum is reduced in bronchial asthma, COPD and in smokers. Eur Respir J 14: 309PubMedGoogle Scholar
  84. 84.
    Lacraz S, Nicod LP, Chicheportiche R, Welgus HG, Dayer JM (1995) IL-10 inhibits metalloproteinase and stimulates TIMP-1 production in human mononuclear phagocytes. J Clin Invest 96: 2304–2310PubMedGoogle Scholar
  85. 85.
    Simon H-U, Seelbach H, Ehmann R, Schmitz M (2003) Clinical and immunological effects of low-dose IFN-α treatment in patients with corticosteroid-resistant asthma. Allergy 58: 1250–1255PubMedGoogle Scholar
  86. 86.
    Boulet LP, Chapman KR, Cote J, Kalra S, Bhagat R, Swystun V, Laviolette M, Cleland LD, Deschesnes F et al (1997) Inhibitory effects of an anti-IgE antibody E25 on allergen-induced early asthmatic response. Am J Respir Crit Care Med 155: 1835–1840PubMedGoogle Scholar
  87. 87.
    Fahy JV, Fleming HE, Wong HH, Liu JT, Su JQ, Reimann J, Fick, RB, Boushey HA (1997) The effect of an anti-IgE monoclonal antibody on the early-and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med 155: 1828–1834PubMedGoogle Scholar
  88. 88.
    Busse WW (2001) Anti-immunoglobulin E (omalizumab) therapy in allergic asthma. Am J Respir Crit Care Med 164: S12–S17PubMedGoogle Scholar
  89. 89.
    Milgrom H, Fick RB, Su J, Reimann JD, Bush RK, Watrous ML, Metzger WJ (1999) Treatment of allergic asthma with monoclonal anti-IgE antibody. N Engl J Med 341: 1966–1973PubMedGoogle Scholar
  90. 90.
    Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD, van As A, Gupta N (2001) Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe asthma. J Allergy Clin Immunol 108: 184–190PubMedGoogle Scholar
  91. 91.
    Soler M, Matz J, Townley R, Buhl R, O’Brien J, Fox H Thirlwell J, Gupta N, Della Cioppa G (2001) The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur Respir J 18: 254–261PubMedGoogle Scholar
  92. 92.
    Ayres JG, Higgins B, Chilvers ER, Ayre G, Blogg M, Fox H (2004) Efficacy and tolerability of anti-immunoglobulin E therapy with Omalizumab in patients with poorly controlled (moderate-to-severe) allergic asthma. Allergy 23: 76–81Google Scholar
  93. 93.
    Vignola AM, Humbert M, Bousquet J, Boulet LP, Hedgecock S, Blogg M, Fox H, Surrey K (2004) Efficacy and tolerability of anti-immunoglobulin E therapy with Omalizumab in patients with concomitant allergic asthma and persistent allergic rhinitis: SOLAR. Allergy 23: 76–81Google Scholar
  94. 94.
    Humbert M, Beasley R, Ayres J, Slavin R, Hebert J, Bousquet J, Beeh KM, Ramos S, Canonica GW, Hedgecock S et al (2005) Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 60: 309PubMedGoogle Scholar
  95. 95.
    Wardlaw AJ (1999) Molecular basis for selective eosinophil trafficking in asthma: A mulitstep paradigm J Allergy Clin Immunol 104: 917PubMedGoogle Scholar
  96. 96.
    Walsh GM, Mermod JJ, Hartnell A, Kay AB, Wardlaw AJ (1991) Human eosinophil, but not neutrophil, adherence to IL-1 stimulated HUVEC is α4β1 (VLA-4) dependent. J Immunol 146: 3419–3423PubMedGoogle Scholar
  97. 97.
    Moser R, Fehr J, Bruijnzeel PB (1992) IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J Immunol 149: 1432–1438PubMedGoogle Scholar
  98. 98.
    Thornhill MH, Kyan-Aung U Haskard DO (1990) IL-4 increases human endothelial cell adhesiveness for T cells but not neutrophils. J Immunol 144: 3060.PubMedGoogle Scholar
  99. 99.
    Miller DH, Khan OA, Sheremata WA, Blumhardt LD, Rice GPA, Libonati MA, Willmer-Hulme AJ, Dalton CM, Miszkiel KA, O’Connor PW et al (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 348: 15PubMedGoogle Scholar
  100. 100.
    Kudlacz E, Whitney C, Andersen C, Duplantier A, Beckius G, Chupak L, Klein A, Kraus K, Milici A (2002) Pulmonary eosinophilia in a murine model of allergic inflammation is attenuated by small molecule alpha4beta1 antagonists. J Pharmacol Exp Ther 301: 747PubMedGoogle Scholar
  101. 101.
    Ulbrich H, Eriksson EE, Lindbom L (2003) Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol Sci 24: 609Google Scholar
  102. 102.
    Berger JR, Koralnik IJ (2005) Progressive multifocal leukoencephalopathy and natalizumab — Unforeseen consequences. N Engl J Med 353: 414–416PubMedGoogle Scholar
  103. 103.
    Uguccioni M, Mackay CR, Ochensberger B, Loetscher P, Rhis S, LaRosa GI, Rao P, Ponath PD, Baggiolini M, Dahinden CA (1997) High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J Clin Invest 100: 1137PubMedGoogle Scholar
  104. 104.
    Romagnani P, De Paulis A, Beltrame C, Annunziato F, Dente V, Maggi E, Romagnani S, Marone G (1999) Tryptase-chymase double-positive human mast cells express the eotaxin receptor CCR3 and are attracted by CCR3-binding chemokines. Am J Pathol 155: 1195PubMedGoogle Scholar
  105. 105.
    Sallusto F, Mackay CR, Lanzavecchia A (1997) Selective expression of the eotaxin receptor CCR3 by human T helper 2 cells. Science 277: 2005PubMedGoogle Scholar
  106. 106.
    Stellato C, Brummet ME, Plitt JR, Shahabuddin S, Baroody FM, Liu MC, Ponath, Beck LA (2001) Expression of the C-C chemokines receptor CCR3 in human airway epithelial cells. J Immunol 166: 1457PubMedGoogle Scholar
  107. 107.
    Erin EM, Williams TJ, Barnes PJ, Hansel TT (2002) Eotaxin receptor (CCR3) antagonism in asthma and allergic disease. Curr Drug Targets Inflamm Allergy 1: 201–214PubMedGoogle Scholar
  108. 108.
    De Lucca GV, Kim UT, Johnson C, Vargo BJ, Welch PK, Covington M, Davies P, Solomon KA, Newton RC, Trainor GL et al (2002) Discovery and structure-activity relationship of N-(ureidoalkyl)-benzyl-piperidines as potent small molecule CC chemokine receptor-3 (CCR3) antagonists. J Med Chem 45: 3794PubMedGoogle Scholar
  109. 109.
    Palframan RT, Collins PD, Williams TJ, Rankin SM (1998) Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow. Blood 91: 2240PubMedGoogle Scholar
  110. 110.
    Duncan CJA, Lawrie A, Blaylock MG, Douglas JG, Walsh GM (2003) Reduced eosinophil apoptosis in induced sputum correlates with asthma severity. Eur Respir J 22: 484–490PubMedGoogle Scholar
  111. 111.
    Vignola AM, Chanez P, Chiappara G, Siena L, Merendino A, Reina C, Gagliardo R, Profita M, Bousquet J, Bonsignore G (1999) Evaluation of apoptosis of eosinophils, macrophages and T lymphocytes in mucosal biopsy specimens of patients with asthma and chronic bronchitis. J Allergy Clin Immunol 103: 563–573PubMedGoogle Scholar
  112. 112.
    Woolley KL, Gibson PG, Carty K, Wilson AJ, Twaddell SH, Woolley J. (1996) Eosinophil apoptosis and the resolution of airway inflammation in asthma. Am J Respir Crit Care Med 154: 237–243PubMedGoogle Scholar
  113. 113.
    Walsh GM (2000) Eosinophil apoptosis: mechanisms and clinical relevance in asthmatic and allergic inflammation. Br J Haematol 111: 61–67PubMedGoogle Scholar
  114. 114.
    Gounni AS, Gregory B, Nutku E, Aris F, Latifa K, Minshall E, North J, Tavernier J, Levit R, Nicolaides N et al (2000) Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood 96: 2163–2171PubMedGoogle Scholar
  115. 115.
    Luttmann W, Knoechel B, Foerster M, Matthys H, Virchow JC Jr, Kroegel C (1996) Activation of human eosinophils by IL-13. Induction of CD69 surface antigen, its relarossitionship to messenger RNA expression, and promotion of cellular viability. J Immunol 157: 1678–1683PubMedGoogle Scholar
  116. 116.
    Hoontrakoon R, Chu HW, Gardai SJ, Wenzel SE, McDonald P, Fadok VA, Henson PM, Bratton DL (2002) Interleukin-15 inhibits spontaneous apoptosis in human eosinophils via autocrine production of granulocyte macrophage-colony stimulating factor and nuclear factor-κB activation. Am J Respir Cell Mol Biol 26: 404–412PubMedGoogle Scholar
  117. 117.
    Anwar ARE, Moqbel R, Walsh GM, Kay AB, Wardlaw AJ (1993) Adhesion to fibronectin prolongs eosinophil survival. J Exp Med 177: 839–843PubMedGoogle Scholar
  118. 118.
    Walsh GM, Symon FA, Wardlaw AJ (1995) Human eosinophils preferentially survive on tissue fibronectin compared with plasma fibronectin. Clin Exp Allergy 25: 1128–1136PubMedGoogle Scholar
  119. 119.
    Temkin V, Levi-Shaeffer F (2001) Mechanisms of tumour necrosis factor alpha mediated eosinophil survival. Cytokine 15: 20PubMedGoogle Scholar
  120. 120.
    Fujihara S, Ward C, Dransfield I, Hay RT, Uings IJ, Hayes B, Farrow SN, Haslett C, Rossi AG (2002) Inhibition of nuclear factor-kappa B activation un-masks the ability of TNF-alpha to induce human eosinophil apoptosis. Eur J Immunol 32: 457PubMedGoogle Scholar
  121. 121.
    Gagliardo R, Chanez P, Mathieu M, Bruno A, Costanzo G, Gougat C, Vachier I, Bousquet J, Bonsignore G, Vignola AM (2003) Persistent activation of nuclear factor-kappaB signaling pathway in severe uncontrolled asthma. Am J Respir Crit Care Med 168: 1190–1198PubMedGoogle Scholar
  122. 122.
    Meagher LC, Cousin JM, Seckl JR, Haslett C (1996) Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 156: 4422–4428PubMedGoogle Scholar
  123. 123.
    Saunders MW, Wheatley AH, George SJ, Lai T, Birchall MA (1999) Do corticosteroids induce apoptosis in nasal polyp inflammatory cells? In vivo and in vitro studies. Laryngoscope 109: 785–790PubMedGoogle Scholar
  124. 124.
    Nutku E, Zhuang Q, Soussi-Gounni A, Aris F, Mazer BD, Hamid Q (2001) Functional expression of IL-12 receptor by human eosinophils: IL-12 promotes eosinophil apoptosis. J Immunol 167: 1039–1046PubMedGoogle Scholar
  125. 125.
    Naseer T, Minshall EM, Leung DY, Laberge S, Ernst P, Martin RJ, Hamid Q (1997) Expression of IL-12 and IL-13 mRNA in asthma and their modulation in response to steroid therapy. Am J Respir Crit Care Med 155: 845–851PubMedGoogle Scholar
  126. 126.
    Bryan SA, O’Conner BJ, Matti S, Leckie MJ, Kanabar V, Khan J, Warrington SJ, Renzetti L, Rames A, Bock JA et al (2000) Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356: 2149–2153PubMedGoogle Scholar
  127. 127.
    Matsumoto K, Schleimer RP, Saito H, Iikura Y, Bochner BS (1995) Induction of apoptosis in human eosinophils by anti-Fas antibody treatment in vitro. Blood 86: 1437–1443PubMedGoogle Scholar
  128. 128.
    Druilhe A, Cai Z, Haile S, Chouaib S, Pretolani M (1996) Fas-mediated apoptosis in cultured human eosinophils. Blood 87: 2822–2830PubMedGoogle Scholar
  129. 129.
    Walsh GM, Williamson ML, Symon FA, Wilars GB, Wardlaw AJ (1996) Ligation of CD69 induces apoptosis and cell death in human eosinophils cultured with GM-CSF. Blood 87: 2815–2821PubMedGoogle Scholar
  130. 130.
    Nutku E, Aizawa H, Hudson SA, Bochner BS (2003) Ligation of Siglec-8: A selective mechanism for induction of human eosinophil apoptosis. Blood 101: 5014–5020PubMedGoogle Scholar
  131. 131.
    Blaylock MG, Sexton DW, Walsh GM (1999) Ligation of CD45 and the isoforms CD45RA and CD45RB accelerates the rate of constitutive apoptosis in human eosinophils. J Allergy Clin Immunol 104: 1244–1250PubMedGoogle Scholar
  132. 132.
    Blaylock MG, Lipworth BJ, Dempsey OJ, Duncan CJ, Lee DK, Lawrie A, Douglas JG, Walsh GM (2003) Eosinophils from patients with asthma express higher levels of the pan-leucocyte receptor CD45 and the isoform CD45RO. Clin Exp Allergy 33: 936–941PubMedGoogle Scholar
  133. 133.
    Druihle A, Letuve S, Petolani M (2003) Glucocorticoid-induced apoptosis in human eosinophils: Mechanisms of action. Apoptosis 8: 481–495Google Scholar
  134. 134.
    Zangirilli J, Robertson N, Shetty A, Wu J, Hastie A, Fish JE, Litwack G, Peters SP (2000) Effect of IL-5, glucocorticoid, and Fas ligation on Bcl-2 homologue expression and caspase activation in circulating human eosinophils. Clin Exp Immunol 120: 12–21Google Scholar
  135. 135.
    Zhang JP, Wong CK, Lam WK (2000) Role of caspases in dexamethasone-induced apoptosis and activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase in human eosinophils. Clin Exp Immunol 122: 20–27PubMedGoogle Scholar
  136. 136.
    Al-Rabia MW, Blaylock MG, Sexton DW, Walsh GM (2004) Membrane receptor mediated apoptosis and caspase activation in the differentiated EoL-1 eosinophilic cell line. J Leukoc Biol 75: 1045–55PubMedGoogle Scholar
  137. 137.
    Gardai SJ, Hoontrakoon R, Goddard CD, Day BJ, Chang LY, Henson PM, Bratton DL (2003) Oxidant-mediated mitochondrial injury in eosinophil apoptosis: Enhancement by glucocorticoids and inhibition by granulocyte-macrophage colony-stimulating factor. J Immunol 170: 556–566PubMedGoogle Scholar
  138. 138.
    Yang E, Korsmeyer SJ (1996) Molecular thanatopsis: A discourse on the Bcl-2 family and cell death. Blood 88: 386–410PubMedGoogle Scholar
  139. 139.
    Ochiai K, Kagami M, Matsumura R, Thmioka H (1997) IL-5 but not interferon-gamma inhibits eosinophil apoptosis by upregulation of Bcl-2 expression. Clin Exp Immunol 107: 198–204PubMedGoogle Scholar
  140. 140.
    Druilhe A, Arock M, Le Goff L, Pretolani M (1998) Human eosinophils express Bcl-2 family proteins: Modulation of Mcl-1 expression by IFN-gamma. Am J Respir Cell Mol Biol 18; 315–322PubMedGoogle Scholar
  141. 141.
    Dewson G, Walsh GM, Wardlaw AJ (1999) Expression of Bcl-2 and its homologues in human eosinophils: Modulation by interleukin-5. Am J Respir Cell Mol Biol 20: 720–728PubMedGoogle Scholar
  142. 142.
    Dibbert B, Daigle I, Braun D, Schranz C, Weber M, Blaser K. Levi-Schaffer F, Anderson GP (1998) Role for Bcl-XL in delayed eosinophil apoptosis mediated by granulocytemacrophage colony-stimulating factor and interleukin-5. Blood 92: 778–783PubMedGoogle Scholar
  143. 143.
    Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407: 784–788PubMedGoogle Scholar
  144. 144.
    Vandivier, RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK, Brain JD, Accurso FJ, Henson PM (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest 109: 661PubMedGoogle Scholar
  145. 145.
    Stern M, Savill J, Haslett C (1996) Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis: mediation by αvβ3/CD36/thrombospondin recognition mechanisms and lack of phlogistic response. Am J Pathol 149: 911–921PubMedGoogle Scholar
  146. 146.
    Platt N, da Silva RP, Gordon S (1998) Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol 8: 356–372Google Scholar
  147. 147.
    Walsh GM, Sexton DW, Blaylock MG, Convery CM (1999) Resting and cytokine-stimulated human small airway epithelial cells recognize and ingest apoptotic eosinophils. Blood 94: 2827–2835PubMedGoogle Scholar
  148. 148.
    Sexton DW, Blaylock MG, Walsh GM (2001) Human alveolar epithelial cells engulf apoptotic eosinophils via integrin-and phosphatidylserine-dependent mechanisms: A process upregulated by dexamethasone. J Allergy Clin Immunol 108: 962–969PubMedGoogle Scholar
  149. 149.
    Sexton DW, Blaylock MG, Al-Rabia M, Walsh GM (2004) Phagocytosis of apoptotic eosinophils but not neutrophils by bronchial epithelial cells. Clin Exp Allergy 34: 1514–1524PubMedGoogle Scholar
  150. 150.
    Huynh ML, Malcolm KC, Kotaru C, Tilstra JA, Westcott JY, Fadok VA, Wenzel SE (2005) Defective apoptotic cell phagocytosis attenuates prostaglandin e2 and 15-hydroxyeicosatetraenoic acid in severe asthma alveolar macrophages. Am J Respir Crit Care Med 172: 972–979PubMedGoogle Scholar
  151. 151.
    Erjefalt JS, Uller L, Malm-Erjefalt M, Persson CG (2004) Rapid and efficient clearance of airway tissue granulocytes through transepithelial migration. Thorax 59: 136–43PubMedGoogle Scholar
  152. 152.
    Uller L, Persson CG, Kallstrom L, Erjefalt JS (2001) Lung tissue eosinophils may be cleared through luminal entry rather than apoptosis: Effects of steroid treatment. Am J Respir Crit Care Med 164: 1948–1956PubMedGoogle Scholar
  153. 153.
    Erjefält JS, Persson CGA (2000) New aspects of degranulation and fates of airway mucosal eosinophils. Am J Respir Crit Care Med 161: 2074–2085PubMedGoogle Scholar
  154. 154.
    Hughes J, Johnson RJ, Mooney A, Hugo C, Gordon K, Savill J (1997) Neutrophil fate in experimental glomerular capillary injury in the rat. Emigration exceeds in situ clearance by apoptosis. Am J Pathol 150: 223PubMedGoogle Scholar
  155. 155.
    Brazil TJ, Dagleish MP, McGorum BC, Dixon PM, Haslett C, Chilvers ER (2005) Kinetics of pulmonary neutrophil recruitment and clearance in a natural and spontaneously resolving model of airway inflammation. Clin Exp Allergy 35: 854–865PubMedGoogle Scholar
  156. 156.
    Huynh ML, Malcolm KC, Kotaru C, Tilstra JA, Westcott JY, Fadok VA, Wenzel SE (2005) Epithelial cells as phagocytes: Apoptotic epithelial cells are engulfed by mammary alveolar epithelial cells and repress inflammatory mediator release. Am J Respir Crit Care Med 172: 972–979PubMedGoogle Scholar
  157. 157.
    Corry DB, Kiss A, Song LZ, Song L, Xu J, Lee SH, Werb Z, Kheradmand F (2004) Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J 18: 995–997PubMedGoogle Scholar
  158. 158.
    Brightling C, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, Pavord ID (2002) Mastcell infiltration of airway smooth muscle in asthma. N Engl J Med 346: 1699–1705PubMedGoogle Scholar
  159. 159.
    Brightling C, Symon F, Holgate S, Wardlaw A, Pavord I, Bradding P (2003) Interleukin-4 and-13 expression is co-localized to mast cells within the airway smooth muscle in asthma. Clin Exp Allergy 33: 1711–1716PubMedGoogle Scholar
  160. 160.
    Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, Sugimoto Y, Kobayashi T, Ushikubi F, Aze Y et al (2000) Prostaglandin D2 as a mediator of allergic asthma. Science 287: 2013PubMedGoogle Scholar
  161. 161.
    Monneret G, Gravel S, Diamond M, Rokach J, Powell WS (2001) Prostaglandin D2 is a potent chemoattractant for eosinophils that acts via a novel DP receptor. Blood 98: 1942PubMedGoogle Scholar
  162. 162.
    Kamath AV, Pavord ID, Ruparelia PR, Chilvers ER (2005) Is the neutrophil the key effector cell in severe asthma? Thorax 60: 529–530PubMedGoogle Scholar
  163. 163.
    Kogan TP, Dupre B, Bui H, McAbee KL, Kassir JM, Scott IL, Hu X, Vanderslice P, Beck PJ, Dixon RA (1998) Novel synthetic inhibitors of selectin-mediated cell adhesion: synthesis of 1,6-bis[3-(3-carboxymethylphenyl)-4-(2-alpha-D-mannopyranosyloxy)phenyl] hexane (TBC1269). J Med Chem 41: 1099–1111PubMedGoogle Scholar
  164. 164.
    Abraham WM, Ahmed A, Sabater JR, Lauredo IT, Botvinnikova Y, Bjercke RJ, Hu X, Revelle BM, Kogan TP, Scott IL (1999) Selectin blockade prevents antigen-induced late bronchial responses and airway hyperresponsiveness in allergic sheep. Am J Respir Crit Care Med 159: 1205–1214PubMedGoogle Scholar
  165. 165.
    Avila PC, Boushey HA, Wong H, Grundland H, Liu J, Fahy JV (2004) Effect of a single dose of the selectin inhibitor TBC1269 on early and late asthmatic responses. Clin Exp Allergy 34: 77–84PubMedGoogle Scholar
  166. 166.
    Beeh KM, Beier J, Buhl R, Zahlten R, Wolff G (2004) Influence of inhaled Bimosiamose (TBC1269), a synthetic pan-selectin antagonist, on the allergen-induced late asthmatic response (LAR) in patients with mild allergic asthma. Am J Respir Crit Care Med 169: A321Google Scholar
  167. 167.
    Repine JE, Bast A, Lankhorst I (1997) Oxidative stress in chronic obstructive pulmonary disease Oxidative Stress Study Group. Am J Respir Crit Care Med 156: 341–357PubMedGoogle Scholar
  168. 168.
    Beeh KM, Beier J (2005) Handle with care: targeting neutrophils in chronic obstructive pulmonary disease and severe asthma? Clin Exp Allergy 36: 142–157Google Scholar
  169. 169.
    Thomas CE, Ohlweiler DF, Carr AA, Nieduzak TR, Hay DA, Adams G, Vaz R, Bernotas RC (1996) Characterization of the radical trapping activity of a novel series of cyclic nitrone spin traps. J Biol Chem 271: 3097–3104PubMedGoogle Scholar
  170. 170.
    Yamamoto C, Yoneda T, Yoshikawa M, Fu A, Tokuyama T, Tsukaguchi K, Narita N (1997) Airway inflammation in COPD assessed by sputum levels of interleukin-8. Chest 112: 505–510PubMedGoogle Scholar
  171. 171.
    Bhowmik A, Seemungal TAR, Sapsford RJ, Wedzicha JA (2000) Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax 55: 114–120PubMedGoogle Scholar
  172. 172.
    Yang XD, Corvalan JR, Wang P, Roy CM, Davis CG (1999) Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states. J Leukoc Biol 66: 401–410PubMedGoogle Scholar
  173. 173.
    White JR, Lee JM, Young PR, Hertzberg RP, Jurewicz AJ, Chaikin MA, Widdowson K, Foley JJ, Martin LD, Griswold DE, Sarau HM (1998) Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J Biol Chem 273: 10095–10098PubMedGoogle Scholar
  174. 174.
    Hodge S, Hodge G, Scicchitano R, Reynolds PN, Holmes M (2003) Alveolar macrophages from subjects with chronic obstructive pulmonary disease are deficient in their ability to phagocytose apoptotic airway epithelial cells. Immunol Cell Biol 81: 289PubMedGoogle Scholar
  175. 175.
    Heasman SJ, Giles KM, Ward C, Rossi AG, Haslett C, Dransfield I (2003) Glucocorticoid-mediated regulation of granulocyte apoptosis and macrophage phagocytosis of apoptotic cells: Implications for the resolution of inflammation. J Endocrinol 178: 29PubMedGoogle Scholar
  176. 176.
    Lee E, Lindo T, Jackson N, Meng-Choong L, Reynolds P, Hill A, Haswell M, Jackson S, Kilfeather S (1999) Reversal of human neutrophil survival by leukotriene B(4) receptor blockade and 5-lipoxygenase and 5-lipoxygenase activating protein inhibitors. Am J Respir Crit Care Med 160: 2079PubMedGoogle Scholar
  177. 177.
    Hannah S, Mecklenburgh K, Rahman I, Bellingan GJ, Greening A, Haslett C, Chilvers ER (1995) Hypoxia prolongs neutrophil survival in vitro. FEBS Lett 372: 233PubMedGoogle Scholar
  178. 178.
    Webb PR, Wang KQ, Scheel-Toellner D, Pongracz J, Salmon M, Lord JM (2000) Regulation of neutrophil apoptosis: A role for protein kinase C and phosphatidylinositol-3-kinase. Apoptosis 5: 451PubMedGoogle Scholar
  179. 179.
    Sexton DW, Walsh GM (2005) Airway inflammation resolution: ‘Must not all things at the last be swallowed up in death?’ Clin Exp Allergy 35: 838–840PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Garry M. Walsh
    • 1
  • Catherine M. McDougall
    • 1
  1. 1.School of Medicine, Institute of Medical SciencesUniversity of AberdeenAberdeenUK

Personalised recommendations