Anti-inflammatory glucocorticoids and annexin 1

  • Mauro Perretti
  • Roderick J. Flower
Part of the Progress in Inflammation Research book series (PIR)


It is now evident that several endogenous anti-inflammatory pathways are activated in parallel with the host inflammatory response to maintain a homeostatic control. From this idea has arisen the concept of anti-inflammation, a term used to describe the balance that exists between pro-inflammatory and anti-inflammatory mediators/pathways that operate in concert to initiate, maintain and finally resolve the inflammatory reaction.


Glucocorticoid Receptor Formyl Peptide Receptor Ultradian Rhythm Extracellular Regulate Kinase Phosphorylation Gelatinase Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gallin JI, Goldstein IM, Snyderman R (1992) Overview. In: JI Gallin, IM Goldstein (eds): Inflammation: Basic principles and clinical correlates. Raven Press, New York, 1–4Google Scholar
  2. 2.
    Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24: 327–334PubMedGoogle Scholar
  3. 3.
    Nourshargh S, Marelli-Berg FM (2005) Transmigration through venular walls: A key regulator of leukocyte phenotype and function. Trends Immunol 26: 157–165PubMedCrossRefGoogle Scholar
  4. 4.
    Kishimoto TK, Anderson DC (1992) The role of integrins in inflammation. In: JI Gallin, IM Goldstein (eds): Inflammation: Basic principles and clinical correlates. Raven Pres, New York, 353–406Google Scholar
  5. 5.
    Ward I, Dransfield I, Chilvers ER, Haslett I, Rossi AG (1999) Pharmacological manipulation of granulocyte apoptosis: potential therapeutic targets. Trends Pharmacol Sci 20: 503–509PubMedCrossRefGoogle Scholar
  6. 6.
    Perretti M (1997) Endogenous mediators that inhibit the leukocyte-endothelium interaction. Trends Pharmacol Sci 18: 418–425PubMedGoogle Scholar
  7. 7.
    Lawrence T, Willoughby DA, Gilroy DW (2002) Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2: 787–795PubMedCrossRefGoogle Scholar
  8. 8.
    McMahon B, Mitchell S, Brady HR, Godson C (2001) Lipoxins: Revelations on resolution. Trends Pharmacol Sci 22: 391–395PubMedCrossRefGoogle Scholar
  9. 9.
    Catania A, Gatti S, Colombo G, Lipton JM (2004) Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev 56: 1–29PubMedCrossRefGoogle Scholar
  10. 10.
    Gilroy DW, Lawrence T, Perretti M, Rossi AG (2004) Inflammatory resolution: New opportunities for drug discovery. Nat Rev Drug Discov 3: 401–416PubMedCrossRefGoogle Scholar
  11. 11.
    Hench PS, Kendall EC, Slocumb CH, Polley HE (1949) The effect of the adrenal cortex (17-hydroxy-11-dehydrocortisone: compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis; preliminary report. Proc Staff Meet Mayo Clin 24:181–197Google Scholar
  12. 12.
    Munck A, Guyre PM, Holbrook NJ (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 5: 25–44PubMedCrossRefGoogle Scholar
  13. 13.
    Dhabhar FS, McEwen BS (1999) Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci USA 96: 1059–1064PubMedCrossRefGoogle Scholar
  14. 14.
    Flower RJ, Parente L, Persico P, Salmon JA (1986) A comparison of the acute inflammatory response in adrenalectomised and sham-operated rats. Br J Pharmacol 87: 57–62PubMedGoogle Scholar
  15. 15.
    Perretti M, Becherucci C, Scapigliati G, Parente L (1989) The effect of adrenalectomy on interleukin-1 release in vitro and in vivo. Br J Pharmacol 98: 1137–1142PubMedGoogle Scholar
  16. 16.
    Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21: 55–89PubMedCrossRefGoogle Scholar
  17. 17.
    Windle RJ, Wood SA, Shanks N, Lightman SL, Ingram CD (1998) Ultradian rhythm of basal corticosterone release in the female rat: Dynamic interaction with the response to acute stress. Endocrinology 139: 443–450PubMedCrossRefGoogle Scholar
  18. 18.
    Shanks N, Windle RJ, Perks PA, Harbuz MS, Jessop DS, Ingram CD, Lightman SL (2000) Early-life exposure to endotoxin alters hypothalamic-pituitary-adrenal function and predisposition to inflammation. Proc Natl Acad Sci USA 97: 5645–5650PubMedCrossRefGoogle Scholar
  19. 19.
    Munck A, Naray-Fejes-Toth A (1992) The ups and downs of glucocorticoid physiology. Permissive and suppressive effects revisited. Mol Cell Endocrinol 90: C1–4PubMedCrossRefGoogle Scholar
  20. 20.
    Fantuzzi G, Ghezzi P (1993) Glucocorticoids as cytokine inhibitors: Role in neuroendocrine control and therapy of inflammation. Med Inflamm 2: 263–270CrossRefGoogle Scholar
  21. 21.
    Perretti M, Ahluwalia A (2000) The microcirculation and inflammation: Site of action for glucocorticoids. Microcirculation 7: 147–161PubMedCrossRefGoogle Scholar
  22. 22.
    Rhen T, Cidlowski JA (2005) Antiinflammatory action of glucocorticoids — New mechanisms for old drugs. N Engl J Med 353: 1711–1723PubMedCrossRefGoogle Scholar
  23. 23.
    Goulding NJ (2004) The molecular complexity of glucocorticoid actions in inflammation — A four-ring circus. Curr Opin Pharmacol 4: 629–636PubMedCrossRefGoogle Scholar
  24. 24.
    Ito K, Yamamura S, Essilfie-Quaye S, Cosio B, Ito M, Barnes PJ, Adcock IM (2006) Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-κB suppression. J Exp Med 203: 7–13PubMedCrossRefGoogle Scholar
  25. 25.
    Buttgereit F, Wehling M, Burmester GR (1998) A new hypothesis of modular glucocorticoid action. Arthritis Rheum 41: 761–767PubMedCrossRefGoogle Scholar
  26. 26.
    Croxtall JD, Choudhury Q, Flower RJ (2000) Glucocorticoids act within minutes to inhibit recruitment of signalling factors to activated EGF receptors through a receptordependent, transcription-independent mechanism. Br J Pharmacol 130: 289–298PubMedCrossRefGoogle Scholar
  27. 27.
    Solito E, Mulla A, Morris JF, Christian HC, Flower RJ, Buckingham JC (2003) Dexamethasone induces rapid serine-phosphorylation and membrane translocation of annexin 1 in a human folliculostellate cell line via a novel nongenomic mechanism involving the glucocorticoid receptor, protein kinase C, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase. Endocrinology 144: 1164–1174PubMedCrossRefGoogle Scholar
  28. 28.
    Bartholome B, Spies CM, Gaber T, Schuchmann S, Berki T, Kunkel D, Bienert M, Radbruch A, Burmester GR, Lauster R et al (2004) Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and upregulated after in vitro stimulation and in patients with rheumatoid arthritis. FASEB J 18: 70–80PubMedCrossRefGoogle Scholar
  29. 29.
    Moraes LA, Paul-Clark MJ, Rickman A, Flower RJ, Goulding NJ, Perretti M (2005) Ligand-specific glucocorticoid receptor activation in human platelets. Blood 106: 4167–4175PubMedCrossRefGoogle Scholar
  30. 30.
    Brain SD, Newbold P, Kajekar R (1995) Modulation of the release and activity of neuropeptides in the microcirculation. Can J Physiol Pharmacol 73: 995–998PubMedGoogle Scholar
  31. 31.
    Yarwood H, Nourshargh S, Brain S, Williams TJ (1993) Effect of dexamethasone on neutrophil accumulation and oedema formation in rabbit skin: An investigation of the site of action. Br J Pharmacol 108: 959–966PubMedGoogle Scholar
  32. 32.
    Vogt CJ, Schmid-Schonbein GW (2001) Microvascular endothelial cell death and rarefaction in the glucocorticoid-induced hypertensive rat. Microcirculation 8: 129–139PubMedGoogle Scholar
  33. 33.
    Morand EF, Bucala R, Leech M (2003) Macrophage migration inhibitory factor: An emerging therapeutic target in rheumatoid arthritis. Arthritis Rheum 48: 291–299PubMedCrossRefGoogle Scholar
  34. 34.
    Toh ML, Yang Y, Leech M, Santos L, Morand EF (2004) Expression of mitogen-activated protein kinase phosphatase 1, a negative regulator of the mitogen-activated protein kinases, in rheumatoid arthritis: Up-regulation by interleukin-1beta and glucocorticoids. Arthritis Rheum 50: 3118–3128PubMedCrossRefGoogle Scholar
  35. 35.
    Delbrouck C, Doyen I, Belot N, Decaestecker C, Ghanooni R, de Lavareille A, Kaltner H, Choufani G, Danguy A, Vandenhoven G et al (2002) Galectin-1 is overexpressed in nasal polyps under budesonide and inhibits eosinophil migration. Lab Invest 82:147–158PubMedGoogle Scholar
  36. 36.
    Liu J, Zhu X, Myo S, Lambertino AT, Xu C, Boetticher E, Munoz NM, Sano M, Cordoba M, Learoyd J et al (2005) Glucocorticoid-induced surface expression of annexin 1 blocks beta2-integrin adhesion of human eosinophils to intercellular adhesion molecule 1 surrogate protein. J Allergy Clin Immunol 115: 493–500PubMedCrossRefGoogle Scholar
  37. 37.
    Di Rosa M, Flower RJ, Hirata F, Parente L, Russo-Marie F (1984) Nomenclature announcement. Anti-phospholipase proteins. Prostaglandins 28: 441–442PubMedCrossRefGoogle Scholar
  38. 38.
    Flower RJ (1988) Lipocortin and the mechanism of action of the glucocorticoids. Br J Pharmacol 94: 987–1015PubMedGoogle Scholar
  39. 39.
    Wallner BP, Mattaliano RJ, Hession C, Cate RL, Tizard R, Sinclair LK, Foeller C, Chow EP, Browning JL, Ramachandran KL et al (1986) Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature 320: 77–81PubMedCrossRefGoogle Scholar
  40. 40.
    Cirino G, Peers SH, Flower RJ, Browning JL, Pepinsky RB (1989) Human recombinant lipocortin 1 has acute local anti-inflammatory properties in the rat paw edema test. Proc Natl Acad Sci USA 86: 3428–3432PubMedCrossRefGoogle Scholar
  41. 41.
    Perretti M, Flower RJ (1993) Modulation of IL-1-induced neutrophil migration by dexamethasone and lipocortin 1. J Immunol 150: 992–999PubMedGoogle Scholar
  42. 42.
    Perretti M, Ahluwalia A, Harris JG, Goulding NJ, Flower RJ (1993) Lipocortin-1 fragments inhibit neutrophil accumulation and neutrophil-dependent edema in the mouse: A qualitative comparison with an anti-CD11b monoclonal antibody. J Immunol 151: 4306–4314PubMedGoogle Scholar
  43. 43.
    Perretti M, Ahluwalia A, Harris JG, Harris HJ, Wheller SK, Flower RJ (1996) Acute inflammatory response in the mouse: exacerbation by immunoneutralization of lipocortin 1. Br J Pharmacol 117: 1145–1154PubMedGoogle Scholar
  44. 44.
    Hannon R, Croxtall JD, Getting SJ, Roviezzo F, Yona S, Paul-Clark MJ, Gavins FN, Perretti M, Morris JF, Buckingham JC et al (2003) Aberrant inflammation and resistance to glucocorticoids in annexin 1-/- mouse. FASEB J 17: 253–255PubMedGoogle Scholar
  45. 45.
    Yona S, Buckingham JC, Perretti M, Flower RJ (2004) Stimulus-specific defect in the phagocytic pathways of annexin 1 null macrophages. Br J Pharmacol 142: 890–898PubMedCrossRefGoogle Scholar
  46. 46.
    Perretti M (2003) The annexin 1 receptor(s): Is the plot unravelling? Trends Pharmacol Sci 24: 574–579PubMedCrossRefGoogle Scholar
  47. 47.
    Francis JW, Balazovich KJ, Smolen JE, Margolis DI, Boxer LA (1992) Human neutrophil annexin I promotes granule aggregation and modulates Ca2+-dependent membrane fusion. J Clin Invest 90: 537–544PubMedCrossRefGoogle Scholar
  48. 48.
    Goulding NJ, Godolphin JL, Sharland PR, Peers SH, Sampson M, Maddison PJ, Flower RJ (1990) Anti-inflammatory lipocortin 1 production by peripheral blood leucocytes in response to hydrocortisone. Lancet 335: 1416–1418PubMedCrossRefGoogle Scholar
  49. 49.
    Ambrose MP, Hunninghake GW (1990) Corticosteroids increase lipocortin I in alveolar epithelial cells. Am J Respir Cell Mol Biol 3: 349–353PubMedGoogle Scholar
  50. 50.
    Perretti M, Croxtall JD, Wheller SK, Goulding NJ, Hannon R, Flower RJ (1996) Mobilizing lipocortin 1 in adherent human leukocytes downregulates their transmigration. Nat Med 22: 1259–1262CrossRefGoogle Scholar
  51. 51.
    Perretti M, Christian H, Wheller SK, Aiello I, Mugridge KG, Morris JF, Flower RJ, Goulding NJ (2000) Annexin I is stored within gelatinase granules of human neutrophils and mobilised on the cell surface upon adhesion but not phagocytosis. Cell Biol Int 24: 163–174PubMedCrossRefGoogle Scholar
  52. 52.
    Lominadze G, Powell DW, Luerman GC, Link AJ, Ward RA, McLeish KR (2005) Proteomic analysis of human neutrophil granules. Mol Cell Proteomics 4: 1503–1521PubMedCrossRefGoogle Scholar
  53. 53.
    Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89: 3503–3521PubMedGoogle Scholar
  54. 54.
    Bylund J, Karlsson A, Boulay F, Dahlgren C (2002) Lipopolysaccharide-induced granule mobilization and priming of the neutrophil response to Helicobacter pylori peptide Hp(2–20), which activates formyl peptide receptor-like 1. Infect Immun 70: 2908–2914PubMedCrossRefGoogle Scholar
  55. 55.
    Perretti M, Chiang N, La M, Fierro IM, Marullo S, Getting SJ, Solito E, Serhan CN (2002) Endogenous lipid-and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat Med 8: 1296–1302PubMedCrossRefGoogle Scholar
  56. 56.
    Chiang N, Fierro IM, Gronert K, Serhan CN (2000) Activation of lipoxin A4 receptors by aspirin-triggered lipoxins and select peptides evokes ligand-specific responses in inflammation. J Exp Med 191: 1197–1208PubMedCrossRefGoogle Scholar
  57. 57.
    Perretti M (1994) Lipocortin-derived peptides. Biochem Pharmacol 47: 931–938PubMedCrossRefGoogle Scholar
  58. 58.
    Hayhoe RP, Kamal AM, Solito E, Flower RJ, Cooper D, Perretti M (2006) Annexin 1 and its bioactive peptide inhibit neutrophil-endothelium interactions under flow: Indication of distinct receptor involvement. Blood 107: 2123–2130PubMedCrossRefGoogle Scholar
  59. 59.
    Walther A, Riehemann K, Gerke V (2000) A novel ligand of the formyl peptide receptor: Annexin I regulates neutrophil extravasation by interacting with the FPR. Mol Cell 5: 831–840PubMedCrossRefGoogle Scholar
  60. 60.
    Ernst S, Lange C, Wilbers A, Goebeler V, Gerke V, Rescher U (2004) An annexin 1 N-terminal peptide activates leukocytes by triggering different members of the formyl peptide receptor family. J Immunol 172: 7669–7676PubMedGoogle Scholar
  61. 61.
    Solito E, Kamal AM, Russo-Marie F, Buckingham JC, Marullo S, Perretti M (2003) A novel calcium-dependent pro-apoptotic effect of annexin 1 on human neutrophils. FASEB J 17: 1544–1546PubMedGoogle Scholar
  62. 62.
    Strausbaugh HJ, Rosen SD (2001) A potential role for annexin 1 as a physiologic mediator of glucocorticoid-induced l-selectin shedding from myeloid cells. J Immunol 166: 6294–6300PubMedGoogle Scholar
  63. 63.
    Zouki C, Ouellet S, Filep JG (2000) The anti-inflammatory peptides, antiflammins, regulate the expression of adhesion molecules on human leukocytes and prevent neutrophil adhesion to endothelial cells. FASEB J 14: 572–580PubMedGoogle Scholar
  64. 64.
    Perretti M, Flower RJ (2004) Annexin 1 and the biology of the neutrophil. J Leukoc Biol 75: 25–29CrossRefGoogle Scholar
  65. 65.
    Filep JG, Zouki C, Petasis NA, Hachicha M, Serhan CN (1999) Anti-inflammatory actions of lipoxin A4 stable analogs are demonstrable in human whole blood: Modulation of leukocyte adhesion molecules and inhibition of neutrophil-endothelial interactions. Blood 94: 4132–4142PubMedGoogle Scholar
  66. 66.
    Chatterjee BE, Yona S, Rosignoli G, Young RE, Nourshargh S, Flower RJ, Perretti M (2005) Annexin 1 deficient neutrophils exhibit enhanced transmigration in vivo and increased responsiveness in vitro. J Leukoc Biol 78: 639–646PubMedCrossRefGoogle Scholar
  67. 67.
    Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80: 617–653PubMedGoogle Scholar
  68. 68.
    Rosengarth A, Gerke V, Luecke H (2001) X-ray structure of full-length annexin 1 and implications for membrane aggregation. J Mol Biol 306: 489–498PubMedCrossRefGoogle Scholar
  69. 69.
    Rosengarth A, Rosgen J, Hinz HJ, Gerke V (2001) Folding energetics of ligand binding proteins II. Cooperative binding of Ca2+ to annexin I. J Mol Biol 306: 825–835PubMedCrossRefGoogle Scholar
  70. 70.
    Rosengarth A, Luecke H (2003) A Calcium-driven conformational switch of the N-terminal and core domains of annexin A1. J Mol Biol 326: 1317–1325PubMedCrossRefGoogle Scholar
  71. 71.
    Gavins FN, Chatterjee BE (2004) Intravital microscopy for the study of mouse microcirculation in anti-inflammatory drug research: Focus on the mesentery and cremaster preparations. J Pharmacol Toxicol Methods 49: 1–14PubMedCrossRefGoogle Scholar
  72. 72.
    Perretti M, Gavins FN (2003) Annexin 1: An endogenous anti-inflammatory protein. News Physiol Sci 18: 60–64PubMedGoogle Scholar
  73. 73.
    Fierro IM, Colgan SP, Bernasconi G, Petasis NA, Clish CB, Arita M, Serhan CN (2003) Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 inhibit human neutrophil migration: Comparisons between synthetic 15 epimers in chemotaxis and transmigration with microvessel endothelial cells and epithelial cells. J Immunol 170: 2688–2694PubMedGoogle Scholar
  74. 74.
    Srikrishna G, Panneerselvam K, Westphal V, Abraham V, Varki A, Freeze HH (2001) Two proteins modulating transendothelial migration of leukocytes recognize novel carboxylated glycans on endothelial cells. J Immunol 166: 4678–4688PubMedGoogle Scholar
  75. 75.
    Oliani SM, Paul-Clark MJ, Christian HC, Flower RJ, Perretti M (2001) Neutrophil interaction with inflamed postcapillary venule endothelium alters annexin 1 expression. Am J Pathol 158: 603–615PubMedGoogle Scholar
  76. 76.
    John CD, Christian HC, Morris JF, Flower RJ, Solito E, Buckingham JC (2004) Annexin 1 and the regulation of endocrine function. Trends Endocrinol Metab 15: 103–109PubMedCrossRefGoogle Scholar
  77. 77.
    Parente L, Solito E (2004) Annexin 1: more than an anti-phospholipase protein. Inflamm Res 53: 125–132PubMedCrossRefGoogle Scholar
  78. 78.
    Wiley RE, Cwiartka M, Alvarez D, Mackenzie DC, Johnson JR, Goncharova S, Lundblad L, Jordana M (2004) Transient corticosteroid treatment permanently amplifies the Th2 response in a murine model of asthma. J Immunol 172: 4995–5005PubMedGoogle Scholar
  79. 79.
    Almawi WY, Saouda MS, Stevens AC, Lipman MK, Barth CM, Strom TB (1996) Partial mediation of glucocorticoid antiproliferative effects by lipocortins. J Immunol 157: 5231–5239PubMedGoogle Scholar
  80. 80.
    Kamal AM, Smith SF, De Silva Wijayasinghe M, Solito E, Corrigan CJ (2001) An annexin 1 (ANXA1)-derived peptide inhibits prototype antigen-driven human T cell Th1 and Th2 responses in vitro. Clin Exp Allergy 31: 1116–1125PubMedCrossRefGoogle Scholar
  81. 81.
    Kieran NE, Doran PP, Connolly SB, Greenan MC, Higgins DF, Leonard M, Godson C, Taylor CT, Henger A, Kretzler M et al (2003) Modification of the transcriptomic response to renal ischemia/reperfusion injury by lipoxin analog. Kidney Int 64: 480–492PubMedCrossRefGoogle Scholar
  82. 82.
    Bensalem N, Ventura AP, Vallee B, Lipecka J, Tondelier D, Davezac N, Dos Santos A, Perretti M, Fajac A, Sermet-Gaudelus I et al (2005) Down-regulation of the anti-inflammatory protein annexin A1 in cystic fibrosis knock-out mice and patients. Mol Cell Proteomics 4: 1591–1601PubMedCrossRefGoogle Scholar
  83. 83.
    Belvisi MG, Wicks SL, Battram CH, Bottoms SE, Redford JE, Woodman P, Brown TJ, Webber SE, Foster ML (2001) Therapeutic benefit of a dissociated glucocorticoid and the relevance of in vitro separation of transrepression from transactivation activity. J Immunol 166: 1975–1982PubMedGoogle Scholar
  84. 84.
    Schacke H, Schottelius A, Docke WD, Strehlke P, Jaroch S, Schmees N, Rehwinkel H, Hennekes H, Asadullah K (2004) Dissociation of transactivation from transrepression by a selective glucocorticoid receptor agonist leads to separation of therapeutic effects from side effects. Proc Natl Acad Sci USA 101: 227–232PubMedCrossRefGoogle Scholar
  85. 85.
    Galon J, Franchimont D, Hiroi N, Frey G, Boettner A, Ehrhart-Bornstein M, O’Shea JJ, Chrousos GP, Bornstein SR (2002) Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J 16: 61–71PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Mauro Perretti
    • 1
  • Roderick J. Flower
    • 1
  1. 1.William Harvey Research InstituteLondonUK

Personalised recommendations