Advertisement

Beyond inflammation: Lipoxins; resolution of inflammation and regulation of fibrosis

  • Paola Maderna
  • Catherine Godson
Part of the Progress in Inflammation Research book series (PIR)

Abstract

It is increasingly apparent that effective host defence involves biphasic production of mediators. An initial acute response involves leukocyte activation and recruitment, a second phase is characterised by the production of mediators regulating phagocytic clearance of apoptotic cells and the active suppression of the initial inflammatory response [1]–[10]. Eicosanoid production in inflammation tightly regulates these processes. During the initial phase, proinflammatory mediators including leukotriene (LT) B4, the cysteinyl LTs and prostaglandins (PG) evoke potent chemotactic responses of leukocytes whose activation is coupled to the production of proinflammatory (Th1-derived cytokines) at sites of inflammation [11]. To facilitate resolution, a second phase of lipid mediators may be produced favouring agents with “pro-resolution activities”, including lipoxins (LXs) and the more recently described resolvins and protectins [5, 12, 13, 14, 15, 16, 17, 18, 19, 20].

Keywords

Apoptotic Cell Apoptotic Neutrophil Apoptotic Cell Clearance Prostaglandin Leukot Essent Fatty Acid Apoptotic PMNs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Serhan CN (2002) Lipoxins and aspirin-triggered 15-epi-lipoxin biosynthesis: an update and role in anti-inflammation and pro-resolution. Prostaglandins Other Lipid Mediat 69: 433–455Google Scholar
  2. 2.
    Serhan CN (2005) Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 73: 141–162PubMedGoogle Scholar
  3. 3.
    Chiang N, Arita M, Serhan CN (2005) Anti-inflammatory circuitry: Lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot Essent Fatty Acids 73: 163–177PubMedGoogle Scholar
  4. 4.
    Maderna P, Godson C (2005) Taking insult from injury: Lipoxins and lipoxin receptor agonists and phagocytosis of apoptotic cells. Prostaglandins Leukot Essent Fatty Acids 73: 179–187PubMedGoogle Scholar
  5. 5.
    Serhan CN, Savill J (2005) Resolution of inflammation: The beginning programs the end. Nat Immunol 12: 1191–1197Google Scholar
  6. 6.
    McMahon B, Godson C (2004) Lipoxins: Endogenous regulators of inflammation. Am J Physiol Renal Physiol 286: F189–F201PubMedGoogle Scholar
  7. 7.
    McMahon B, Mitchell S, Brady HR, Godson C (2001) Lipoxins: Revelations on resolution. Trends Pharmacol Sci 22: 391–395PubMedGoogle Scholar
  8. 8.
    Maderna P, Godson C (2003) Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta 1639: 141–151PubMedGoogle Scholar
  9. 9.
    Kieran N, Maderna P, Godson G (2004) Lipoxins: Potential anti-inflammatory, proresolution, and antifibrotic mediators in renal disease. Kidney Int 65: 1145–1154PubMedGoogle Scholar
  10. 10.
    Lawrence T, Willoughby DA, Gilroy DW (2002) Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2: 787–795PubMedGoogle Scholar
  11. 11.
    Borgeat P, Naccache PH (1990) Biosynthesis and biological activity of leukotriene B4. Clin Biochem 23: 459–468PubMedGoogle Scholar
  12. 12.
    Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation: Signals in resolution. Nat Immunol 2: 612–619PubMedGoogle Scholar
  13. 13.
    Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K (2000) Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 192: 1197–1204PubMedGoogle Scholar
  14. 14.
    Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac RL (2002) Resolvins: A family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196: 1025–1037PubMedGoogle Scholar
  15. 15.
    Serhan CN (2005) Novel omega-3-derived local mediators in anti-inflammation and resolution. Pharmacol Ther 105: 7–21PubMedGoogle Scholar
  16. 16.
    Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 278: 14677–14687PubMedGoogle Scholar
  17. 17.
    Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN et al (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278: 43807–43817PubMedGoogle Scholar
  18. 18.
    Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E, Gotlinger KH, Hong S, Serhan CN (2005) Molecular circuits of resolution: formation and actions of resolvins and protectins. J Immunol 174: 4345–4355PubMedGoogle Scholar
  19. 19.
    Serhan CN, Arita M, Hong S, Gotlinger KH (2004) Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132PubMedGoogle Scholar
  20. 20.
    Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, Yang R, Colgan SP, Petasis NA (2006) Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: assignments of dihydroxy-containing docosatrienes. J Immunol 17: 1848–1859Google Scholar
  21. 21.
    Serhan CN, Hamberg M, Samuelsson B (1984) Lipoxins: Novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc Natl Acad Sci USA 81: 5335–5339PubMedGoogle Scholar
  22. 22.
    Lee TH, Horton CE, Kyan-Aungm V, Haskard D, Crea AEG, Spur W (1989) Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated by LTB4 and N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Clin Sci (Lond) 77: 195–203Google Scholar
  23. 23.
    Soyombo O, Spur BW, Lee TH (1994) Effects of lipoxin A4 on chemotaxis and degranulation of human eosinophils stimulated by platelet activating factor and N-formy-L-lmethionyl-L-leucyl-L-phenylalanine. Allergy 49: 230–234PubMedGoogle Scholar
  24. 24.
    Colgan SP, Serhan CN, Parkos CA, Delp-Archer C, Madara JL (1993) Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial cell monolayers. J Clin Invest 92: 75–82PubMedGoogle Scholar
  25. 25.
    Papayianni A, Serhan CN, Brady HR (1996) Lipoxins inhibit leukotriene-stimulated interactions of human neutrophils and endothelial cells. J Immunol 156: 2264–2272PubMedGoogle Scholar
  26. 26.
    Pettitt TR, Rowley AF, Barrow SE, Mallet AI, Secombes CJ (1991) Synthesis of lipoxins and other lipoxygenase products by macrophages from the rainbow trout, Oncorhynchus mykiss. Biol Chem 266: 8720–8726Google Scholar
  27. 27.
    Serhan CN, Nicolaou KC, Webber SE, Veale CA, Dahlen SE, Puustinen TJ, Samuelsson B (1986) Lipoxin A. Stereochemistry and biosynthesis. J Biol Chem 261: 16340–16345PubMedGoogle Scholar
  28. 28.
    Serhan CN, Hamberg M, Samuelsson B, Morris J, Wishka DG (1986) On the stereochemistry and biosynthesis of lipoxin B. Proc Natl Acad Sci USA 83: 1983–1987PubMedGoogle Scholar
  29. 29.
    Serhan CN (1997) Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): A jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins 53: 107–137PubMedGoogle Scholar
  30. 30.
    Claria J, Serhan CN (1995) Aspirin triggers novel bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci USA 92: 9475–9479PubMedGoogle Scholar
  31. 31.
    Filep JG, Khreiss T, Jozsef L (2005) Lipoxins and aspirin-triggered lipoxins in neutrophil adhesion and signal transduction. Prostaglandins Leukot Essent Fatty Acids 73: 257–262PubMedGoogle Scholar
  32. 32.
    Takano T, Fiore S, Maddox JF, Brady HR, Petasis NA, Serhan CN (1997) Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: Evidence for anti-inflammatory receptors. Exp Med 185: 1693–1704Google Scholar
  33. 33.
    Petasis NA, Akritopoulou-Zanze I, Fokin VV, Bernasconi G, Keledjian R, Yang R, Uddin J, Jasim Nagulapalli KC, Serhan CN (2005) Design, synthesis and bioactions of novel stable mimetics of lipoxins and aspirin-triggered lipoxins. Prostaglandins Leukot Essent Fatty Acids 73: 301–321PubMedGoogle Scholar
  34. 34.
    Serhan CN, Maddox JF, Petasis NA, Akritopoulou-Zanze I, Papayianni A, Brady HR, Colgan SP, Madara JL (1995) Design of lipoxin A4 stable analogs that block transmigration and adhesion of human neutrophils. Biochemistry 34: 14609–14615PubMedGoogle Scholar
  35. 35.
    Maddox JF, Hachicha M, Takano T, Petasis NA, Fokin VV, Serhan CN (1997) Lipoxin A4 stable analogs are potent mimetics that stimulate human monocytes and THP-1 cells via a G-protein-linked lipoxin A4 receptor. J Biol Chem 272: 6972–6978PubMedGoogle Scholar
  36. 36.
    Guilford WJ, Bauman JG, Skuballa W, Bauer S, Wei GP, Davey D, Schaefer C, Mallari C, Terkelsen J, Tseng JL et al (2004) Novel 3-oxa lipoxin A4 analogues with enhanced chemical and metabolic stability have anti-inflammatory activity in vivo. J Med Chem 47: 2157–2165PubMedGoogle Scholar
  37. 37.
    Fiorucci S, Wallace JL, Mencarelli A, Distrutti E, Rizzo G, Farneti S, Morelli A, Tseng JL, Suramanyam B, Guilford WJ et al (2004) A β-oxidation-resistant lipoxin A4 analog treats hapten-induced colitis by attenuating inflammation and immune dysfunction. Proc Natl Acad Sci USA 101: 15736–15741PubMedGoogle Scholar
  38. 38.
    Bannenberg G, Moussignac RL, Gronert K, Devchand PR, Schmidt BA, Guilford WJ, Bauman JG, Subramanyam B Perez HD, Parkinson JF, Serhan CN (2004) Lipoxins and novel 15-epi-lipoxin analogs display potent anti-inflammatory actions after oral administration. Br J Pharmacol 143: 43–52PubMedGoogle Scholar
  39. 39.
    Levy BD (2005) Anti-inflammatory circuitry: lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot Essent Fatty Acids 73: 231–237PubMedGoogle Scholar
  40. 40.
    Lee TH, Crea AE, Gant V, Spur BW, Marron BE, Nicolaou KC, Reardon E, Brezinski M, Serhan CN (1990) Identification of lipoxin A4 and its relationship to the sulfidopeptide leukotrienes C4, D4, and E4 in the bronchoalveolar lavage fluids obtained from patients with selected pulmonary diseases. Am Rev Respir Dis 141: 1453–1458PubMedGoogle Scholar
  41. 41.
    Karp CL, Flick LM, Park KW, Softic S, Greer TM, Keledjian R, Yang R, Uddin J, Guggino WB, Atabani SF et al (2004) Defective lipoxin-mediated anti-inflammatory activity in the cystic fibrosis airway. Nat Immunol 5: 388–392PubMedGoogle Scholar
  42. 42.
    Munger KA, Montero A, Fukunaga M, Uda S, Yura T, Imai E, Kaneda Y, Valdivielso JM, Badr KF (1999) Transfection of rat kidney with human 15-lipoxygenase suppresses inflammation and preserves function in experimental glomerulonephritis. Proc Natl Acad Sci USA 96: 13375–13380PubMedGoogle Scholar
  43. 43.
    Claria J, Titos E, Jimenez W, Ros J, Gines P, Arroyo V, Rivera F, Rodes J (1998) Altered biosynthesis of leukotrienes and lipoxins and host defense disorders in patients with cirrhosis and ascites. Gastroenterology 115: 147–156PubMedGoogle Scholar
  44. 44.
    Stenke L, Edenius C, Samuelsson J, Lindgren JA (1991) Deficient lipoxin synthesis: A novel platelet dysfunction in myeloproliferative disorders with special reference to blastic crisis of chronic myelogenous leukaemia. Blood 78: 2989–2995PubMedGoogle Scholar
  45. 45.
    Pouliot M, Clish CB, Petasis NA, Van Dyke TE, Serhan CN (2000) Lipoxin A4 analogues inhibit leukocyte recruitment to Porphyromonas gingivalis: A role for cyclooxygenase-2 and lipoxins in periodontal disease. Biochemistry 39: 4761–4768PubMedGoogle Scholar
  46. 46.
    Bonnans C, Vachier I, Chavis C, Godard P, Bousquet J, Chanez P (2002) Lipoxins are potential endogenous antiinflammatory mediators in asthma. Am J Respir Crit Care Med 165: 1531–1535PubMedGoogle Scholar
  47. 47.
    Brezinski DA, Nesto RW, Serhan CN (1992) Angioplasty triggers intra-coronary leukotrienes and lipoxin A4. Impact of aspirin therapy. Circulation 86: 56–63PubMedGoogle Scholar
  48. 48.
    Edenius C, Kumlin M, Bjork T, Anggard A, Lindgren JA (1990) Lipoxin formation in human nasal polyps and bronchial tissue. FEBS Lett 272: 25–28PubMedGoogle Scholar
  49. 49.
    Bandeira-Melo C, Serra MF Diaz BL, Cordeiro RS, Silva PM, Lenzi HL, Bakhle YS, Serhan CN, Martins MA (2002) Cyclooxygenase-2-derived prostaglandin E2 and lipoxin A4 accelerate resolution of allergic edema in Angiostrongylus costaricensis-infected rats: Relationship with concurrent eosinophilia. J Immunol 164: 1029–1036Google Scholar
  50. 50.
    Chiang N, Gronert K, Clish CB, O’Brien JA, Freeman MW, Serhan CN (1999) Leukotriene B4 receptor transgenic mice reveal novel protective roles for lipoxins and aspirintriggered lipoxins in reperfusion. J Clin Invest 104: 309–316PubMedGoogle Scholar
  51. 51.
    Mayadas TN, Mendrick DL, Brady HR, Tang T, Papayianni A, Assmann KJ, Wagner DD, Hynes RO, Cotran RS (1996) Acute passive anti-glomerular basement membrane nephritis in P-selectin-deficient mice. Kidney Int 49: 1342–1349PubMedGoogle Scholar
  52. 52.
    Aliberti J, Serhan C, Sher A (2002) Parasite-induced lipoxin A(4) is an endogenous regulator of IL-12 production and immunopathology in Toxoplasma gondii infection. J Exp Med 196: 1253–1262PubMedGoogle Scholar
  53. 53.
    Aliberti J, Hieny S, Reis E, Sousa C, Serhan CN, Sher A (2002) Lipoxin-mediated inhibition of IL-12 production by DCs: A mechanism for regulation of microbial immunity. Nat Immunol. 3: 76–82PubMedGoogle Scholar
  54. 54.
    Chiang N, Takano T, Clish CB, Petasis NA, Tai H-H, Serhan CN (1998) Aspirin-triggered 15-epi-lipoxin A4 (ATL) generation by human leukocytes and murine peritonitis exudates: Development of a specific 15-epi-LXA4 ELISA. J Pharmacol Exp Ther 287: 779–790PubMedGoogle Scholar
  55. 55.
    Perretti M, Chiang N, La M, Fierro IM, Marullo S, Getting SJ, Solito E, Serhan CN (2002) Endogenous lipid-and peptide-derived anti-inflammatory pathways generated with glucocorticoid and aspirin treatment activate the lipoxin A4 receptor. Nat Med 8: 1296–1302PubMedGoogle Scholar
  56. 56.
    Titos E, Chiang N, Serhan CN, Romano M, Gaya J, Pueyo G, Claria J (1999) Hepatocytes are a rich source of novel aspirin-triggered 15-epi-lipoxin A4 (ATL). Am J Physiol 277: C870–C877PubMedGoogle Scholar
  57. 57.
    Fiorucci S, de Lima OM Jr, Mencarelli A, Palazzetti B, Distrutti E, McKnight W, Dicay M, Ma L, Romano M, Morelli A et al (2002) Cyclooxygenase-2-derived lipoxin A4 increases gastric resistance to aspirin-induced damage. Gastroenterology 123: 1598–1606PubMedGoogle Scholar
  58. 58.
    Chiang N, Bermudez EA, Ridker PM, Hurwitz S, Serhan CN (2004) Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. Proc Natl Acad Sci USA 101: 15178–15183PubMedGoogle Scholar
  59. 59.
    Chiang N, Hurwitz S, Ridker PM, Serhan CN (2006) Aspirin has a gender-dependent impact on antiinflammatory 15-epi-lipoxin A4 formation. A randomized human trial. Arterioscler Thromb Vasc Biol 26: 14–17Google Scholar
  60. 60.
    Levin RI (2005) The puzzle of aspirin and sex. N Engl J Med 352: 1366–1368PubMedGoogle Scholar
  61. 61.
    Fiore S, Maddox JF, Perez HD, Serhan CN (1994) Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J Exp Med 180: 253–260PubMedGoogle Scholar
  62. 62.
    Ariel A, Chiang N, Arita M, Petasis NA, Serhan CN (2003) Aspirin-triggered lipoxin A4 and B4 analogs block extracellular signal-regulated kinase-dependent TNF-α secretion from human T cells. J Immunol 170: 6266–6272PubMedGoogle Scholar
  63. 63.
    Kucharzik T, Gewirtz AT, Merlin D, Madara JL, Williams IR (2003) Lateral membrane LXA4 receptors mediate LXA4 anti-inflammatory actions on intestinal epithelium. Am J Physiol Cell Physiol 284: C888–896PubMedGoogle Scholar
  64. 64.
    Sodin-Semrl S, Taddeo B, Tseng D, Varga J, Fiore S (2000) Lipoxin A4 inhibits IL-1 beta-induced IL-6, IL-8, and matrix metalloproteinase-3 production in human synovial fibroblasts and enhances synthesis of tissue inhibitors of metalloproteinases. J Immunol 164: 2660–2666PubMedGoogle Scholar
  65. 65.
    Bonnans C, Mainprice B, Chanez P, Bousquet J, Urbach V (2003) Lipoxin A4 stimulates a cytosolic Ca2+ increase in human bronchial epithelium. J Biol Chem 278: 10879–10884PubMedGoogle Scholar
  66. 66.
    McMahon B, Stenson C, McPhillips F, Fanning A, Brady HR, Godson C (2000) Lipoxin A4 antagonizes the mitogenic effects of leukotriene D4 in human renal mesangial cells. Differential activation of MAP kinases through distinct receptors. J Biol Chem 275: 27566–27575PubMedGoogle Scholar
  67. 67.
    Chiang N, Fierro IM, Gronert K, Serhan (2000) Activation of lipoxin A4 receptors by aspirin-triggered lipoxins and select peptides evokes ligand-specific responses in inflammation. J Exp Med 191: 1197–1207PubMedGoogle Scholar
  68. 68.
    Yang D, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooters J, Oppenheim JJ, Chertov O (2000) LL-37, the neutrophil granule-and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 192: 1069–1074PubMedGoogle Scholar
  69. 69.
    Chen Q, Wade D, Kurosaka K, Wang ZY, Oppenheim JJ, Yang D (2004) Temporin A and related frog antimicrobial peptides use formyl peptide receptor-like 1 as a receptor to chemoattract phagocytes. J Immunol 173: 2652–2659PubMedGoogle Scholar
  70. 70.
    Elagoz A, Henderson D, Babu PS, Salter S, Grahames C, Bowers L, Roy MO, Laplante P, Grazzini E, Ahmad S et al (2004) A truncated form of CKbeta8-1 is a potent agonist for human formyl peptide-receptor-like 1 receptor. Br J Pharmacol 141: 37–46PubMedGoogle Scholar
  71. 71.
    Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M, Blasi F (2002) The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci USA 99: 1359–1364PubMedGoogle Scholar
  72. 72.
    Su SB, Gao J, Gong W, Dunlop NM, Murphy PM, Oppenheim JJ, Wang JM (1999) T21/DP107, a synthetic leucine zipper-like domain of the HIV-1 envelope gp41, attracts and activates human phagocytes by using G-protein-coupled formyl peptide receptors. J Immunol 162: 5924–5930PubMedGoogle Scholar
  73. 73.
    Le Y, Jiang S, Hu J, Gong W, Su S, Dunlop NM, Shen W, Li B, Ming Wang J (2000) N36, a synthetic N-terminal heptad repeat domain of the HIV-1 envelope protein gp41, is an activator of human phagocytes. Clin Immunol 96: 236–242PubMedGoogle Scholar
  74. 74.
    Le Y, Yazawa H, Gong W, Yu Z, Ferrans VJ, Murphy PM, Wang JM (2001) Cutting edge: The neurotoxic prion peptide fragment PrP106-126 is a chemotactic agonist for the G protein coupled receptor formyl peptide receptor-like 1. J Immunol 166: 1448–1451PubMedGoogle Scholar
  75. 75.
    Su SB, Gong W, Gao JL, Shen W, Murphy PM, Oppenheim JJ, Wang JM (1999) A seven transmembrane, G-protein coupled receptor, FPRL1 mediates the chemotactic activity of serum amyloid A for human phagocytic cells. J Exp Med 189: 395–402PubMedGoogle Scholar
  76. 76.
    Le Y, Gong W, Tiffany HL, Tumanov A, Nedospasov S, Shen W, Dunlop NM, Gao JL, Murphy PM, Oppenheim JJ et al (2001) Amyloid β42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J Neurosci 21: 1–5Google Scholar
  77. 77.
    Perretti M (2003) The annexin 1 receptor(s): is the plot unravelling? Trends Pharmacol Sci 24: 574–579PubMedGoogle Scholar
  78. 78.
    Yang YH, Morand EF, Getting SJ, Paul-Clark M, Liu DL, Yona S, Hannon R, Buckingham JC, Perretti M, Flower RJ (2004) Inhibitory effect of annexin I on synovial inflammation in rat adjuvant arthritis. Arthritis Rheum 42: 1538–1544Google Scholar
  79. 79.
    La M, D’Amico M, Bandiera S, Di Filippo C, Oliani SM, Gavins FN, Flower RJ, Perretti M (2001) Annexin 1 peptides protect against experimental myocardial ischemia-reperfusion: Analysis of their mechanism of action. FASEB J 15: 2247–2256PubMedGoogle Scholar
  80. 80.
    Gavins FN, Sawmynaden P, Chatterjee BE, Perretti M (2005) A twist in anti-inflammation: Annexin 1 acts via the lipoxin A4 receptor. Prostaglandins Leukot Essent Fatty Acids 73: 211–219PubMedGoogle Scholar
  81. 81.
    Bae YS, Yi HJ, Lee HY (2003) Differential activation of formyl peptide receptor-like 1 by peptide ligands. J Immunol 171: 6807–6813PubMedGoogle Scholar
  82. 82.
    Filep JG, Zouki C, Petasis NA, Hachicha M, Serhan CN (1999) Anti-inflammatory actions of lipoxin A4 stable analogs are demonstrable in human whole blood: Modulation of leukocyte adhesion molecules and inhibition of neutrophil-endothelial interactions. Blood 94: 4132–4142PubMedGoogle Scholar
  83. 83.
    Papayianni A, Serhan CN, Phillips ML, Rennke HG, Brady HR (1995) Transcellular biosynthesis of lipoxin A4 during adhesion of platelets and neutrophils in experimental immune complex glomerulonephritis. Kidney Int 47: 1295–1302PubMedGoogle Scholar
  84. 84.
    Patcha V, Wigren J, Winberg ME, Rasmusson B, Li J, Sarndahl E (2004) Differential inside-out activation of beta2-integrins by leukotriene B4 and fMLP in human neutrophils. Exp Cell Res 300: 308–319PubMedGoogle Scholar
  85. 85.
    Gronert K, Gewirtz A, Madara JL, Serhan CN (1998) Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon γ and inhibits tumor necrosis factor α-induced IL-8 release. J Exp Med 187: 1285–1294PubMedGoogle Scholar
  86. 86.
    Goh J, Baird AW, O’Keane C, Watson RW, Cottell, Bernasconi G, Petasis NA, Godson C, Brady HR, MacMathuna P (2001) Lipoxin A4 and aspirin-triggered 15-epi-lipoxin A4 antagonize TNFα-stimulated neutrophils-enterocyte interactions in vitro and attenuate TNFα-induced chemokine release and colonocyte apoptosis in human intestinal mucosa ex vivo. J Immunol 167: 2772–2780PubMedGoogle Scholar
  87. 87.
    Gewirtz AT, McCormick B, Neish AS, Petasis NA, Gronert K, Serhan CN, Madara JL. (1998) Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. J Clin Invest 101: 1860–1869PubMedGoogle Scholar
  88. 88.
    Hachicha M, Pouliot M, Petasis NA, Serhan CN (1999) Lipoxin (LX)A4 and aspirintriggered 15-epi-LXA4 inhibit tumor necrosis factor β-induced neutrophil responses and trafficking: Regulators of a cytokine-chemokine axis. J Exp Med 189: 1923–1930PubMedGoogle Scholar
  89. 89.
    Devchand PR, Arita M, Hong S, Bannenberg G, Moussignac RL, Gronert K, Serhan CN (2003) Human ALX receptor regulates neutrophil recruitment in transgenic mice: Roles in inflammation and host defense. FASEB J 17: 652–659PubMedGoogle Scholar
  90. 90.
    Arita M, Bianchini F, Aliberti J, Sher A, Chiang N, Hong S, Yang R, Petasis NA, Serhan CN (2005) Stereochemical assignment, anti-inflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med 201: 713–772PubMedGoogle Scholar
  91. 91.
    McMahon B, Mitchell D, Shattock R, Martin F, Brady HR, Godson C (2002) Lipoxin, leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. FASEB J 16: 1817–1819PubMedGoogle Scholar
  92. 92.
    Mitchell D, Rodgers K, Hanly J, McMahon B, Brady HR, Martin F, Godson C (2004) Lipoxins inhibit Akt/PKB activation and cell cycle progression in human mesangial cells. Am J Pathol 164: 937–946PubMedGoogle Scholar
  93. 93.
    Rodgers K, McMahon B, Mitchell D, Sadlier D, Godson C (2005) Lipoxin A4 modifies platelet-derived growth factor-induced pro-fibrotic gene expression in human renal mesangial cells. Am J Pathol 167: 683–694PubMedGoogle Scholar
  94. 94.
    Fierro IM, Kutok JL, Serhan CN (2002) Novel lipid mediator regulators of endothelial cell proliferation and migration: aspirin-triggered-15R-lipoxin A4 and lipoxin A4. J Pharmacol Exp Ther 300: 385–392PubMedGoogle Scholar
  95. 95.
    Cezar-de-Mello PF, Nascimento-Silva V, Villela CG, Fierro IM (2006) Aspirin-triggered lipoxin A4 inhibition of VEGF-induced endothelial cell migration involves actin polymerization and focal adhesion assembly. Oncogene 25: 122–129PubMedGoogle Scholar
  96. 96.
    Wu SH Wu XH, Lu C, Dong L, Chen ZQ (2006) Lipoxin A4 inhibits proliferation of human lung fibroblasts induced by connective tissue growth factor. Am J Respir Cell Mol Biol 34: 65–72PubMedGoogle Scholar
  97. 97.
    Schottelius AJ, Giesen C, Asadullah K, Fierro IM, Colgan SP, Bauman J, Guilford W, Perez HD, Parkinson JF (2002) An aspirin-triggered lipoxin A4 stable analog displays a unique topical anti-inflammatory profile. J Immunol 169: 7063–7070PubMedGoogle Scholar
  98. 98.
    Van Dyke TE, Serhan CN (2003) Resolution of inflammation: A new paradigm for the pathogenesis of periodontal diseases. J Dent Res 82: 82–90PubMedGoogle Scholar
  99. 99.
    Pouliot M, Clish CB, Petasis NA, Van Dyke TE, Serhan CN (2000) Lipoxin A4 analogues inhibit leukocyte recruitment to Porphyromonas gingivalis: A role for cyclooxygenase-2 and lipoxins in periodontal disease. Biochemistry 39: 4761–4768PubMedGoogle Scholar
  100. 100.
    Levy BD, De Sanctis GT, Devchand PR, Kim E, Ackerman K, Schmidt BA, Szczeklik W, Drazen JM, Serhan CN (2002) Multipronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A4. Nat Med 8: 1018–1023PubMedGoogle Scholar
  101. 101.
    Gewirtz AT, Collier-Hyams LS, Young AN, Kucharzik T, Guilford WJ, Parkinson JF, Williams IR, Neish AS, Madara JL (2002) Lipoxin A4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J Immunol 168: 5260–5267PubMedGoogle Scholar
  102. 102.
    Canny G, Levy O, Furuta GT, Narravula-Alipati S, Sisson RB, Serhan CN, Colgan SP (2002) Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci USA 99: 3902–3907PubMedGoogle Scholar
  103. 103.
    Leonard MO, Hannan K, Burne MJ, Lappin DW, Doran P, Coleman P, Stenson C, Taylor CT, Daniels F, Godson C et al (2002) 15-Epi-16-(para-fluorophenoxy)-lipoxin A4-methyl ester, a synthetic analogue of 15-epi-lipoxin A4, is protective in experimental ischemic acute renal failure. J Am Soc Nephrol 13: 1657–1662PubMedGoogle Scholar
  104. 104.
    Kieran NE, Doran PP, Connolly SB, Greenan MC, Higgins DF, Leonard M, Godson C, Taylor CT, Henger A, Kretzler M et al (2003) Modification of the transcriptomic response to renal ischemia/reperfusion injury by lipoxin analog. Kidney Int 64: 480–492PubMedGoogle Scholar
  105. 105.
    Savill J, Dransfield I, Gregory C, Haslett CA (2002) A blast from the past: Clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 12: 965–975Google Scholar
  106. 106.
    Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407: 784–788PubMedGoogle Scholar
  107. 107.
    Henson PM, Bratton DL, Fadok VA (2001) Apoptotic cell removal. Curr Biol 11: R795–R805PubMedGoogle Scholar
  108. 108.
    Gregory CD, Devitt A (2004) The macrophage and the apoptotic cell: An innate immune interaction viewed simplistically? Immunology 113: 1–14PubMedGoogle Scholar
  109. 109.
    Parnaik R, Raff MC, Scholes J (2000) Differences between the clearance of apoptotic cells by professional and non-professional phagocytes. Curr Biol 10: 857–860PubMedGoogle Scholar
  110. 110.
    Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2 and PAF. J Clin Invest 101: 890–898PubMedGoogle Scholar
  111. 111.
    Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I (1997) Immunosuppressive effects of apoptotic cells. Nature 390: 350–351PubMedGoogle Scholar
  112. 112.
    Huynh MLN, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promoted TGF-β1 secretion and the resolution of inflammation. J Clin Invest 109: 41–50PubMedGoogle Scholar
  113. 113.
    Golpon HA, Fadok VA, Taraseviciene-Stewart L, Scerbavicius R, Sauer C, Welte T, Henson PM, Voelkel NF (2004) Life after corpse engulfment: Phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J 18: 1716–1718PubMedGoogle Scholar
  114. 114.
    Roos A, Xu W, Castellano G, Nauta AJ, Garred P, Daha MR, van Kooten C (2004) Mini-review: A pivotal role for innate immunity in the clearance of apoptotic cells. Eur J Immunol 34: 921–929PubMedGoogle Scholar
  115. 115.
    Hart SP, Smith JR, Dransfield I (2004) Phagocytosis of opsonized apoptotic cells: Roles for ‘old-fashioned’ receptors for antibody and complement. Clin Exp Immunol 135: 181–185PubMedGoogle Scholar
  116. 116.
    Leverrier Y, Ridley AJ (2001) Requirement for Rho GTPases and PI 3-kinases during apoptotic cell phagocytosis by macrophages. Curr Biol 11: 195–199PubMedGoogle Scholar
  117. 117.
    Fadok VA, Bratton D, Courtney Frasch L, Warner ML, Henson PM (1998) The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ 5: 551–562PubMedGoogle Scholar
  118. 118.
    Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL (2001) Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem 276: 1071–1077PubMedGoogle Scholar
  119. 119.
    Anderson HA, Englert R, Gursel I, Shacter E (2002) Oxidative stress inhibits the phagocytosis of apoptotic cells that have externalised phosphatidylserine, Cell Death Differ 9: 616–625PubMedGoogle Scholar
  120. 120.
    A Devitt, Pierce S, Oldreive C, Shingler WH, Gregory CD (2003) CD14-dependent clearance of apoptotic cells by human macrophages: the role of phosphatidylserine. Cell Death Differ 10: 371–382PubMedGoogle Scholar
  121. 121.
    Arur S, Uche UE, Rezaul K, Fong M, Scranton V, Cowan AE, Mohler W, Han DK (2003) Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell 4: 587–598PubMedGoogle Scholar
  122. 122.
    Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343: 170–173PubMedGoogle Scholar
  123. 123.
    Fadok VA, Bratton DL, Henson PM (2001) Phagocyte receptors for apoptotic cells: recognition, uptake and consequences. J Clin Invest 108: 957–962PubMedGoogle Scholar
  124. 124.
    Gaipl US, Voll RE, Sheriff A, Franz S, Kalden JR, Herrmann M (2005) Impaired clearance of dying cells in systemic lupus erythematosus. Autoimmun Rev 4: 189–194PubMedGoogle Scholar
  125. 125.
    Gaipl US, Kuhn A, Sheriff A, Munoz LE, Franz S, Voll RE, Kalden JR, Herrmann M (2006) Clearance of apoptotic cells in human SLE. Curr Dir Autoimmun 9: 173–187PubMedGoogle Scholar
  126. 126.
    Botto M, Del’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ (2002) Homozygous C1q deficiency causes glomerulo-nephritis associated with multiple apoptotic bodies. Nat Genet 19: 56–59Google Scholar
  127. 127.
    Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC, Roubey RA, Earp HS, Matsushima G, Reap EA (2002) Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 196: 135–140PubMedGoogle Scholar
  128. 128.
    Hanayama R, Tanaka M, Miyasaka K, Aozasa K, Koike M, Uchiyama Y, Nagata S (2004) Autoimmune disease and impaired uptake of apoptotic cells in MFG-E8-deficient mice. Science 304: 1147–1150PubMedGoogle Scholar
  129. 129.
    Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK, Brain JD, Accurso FJ, Henson PM (2002) Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Immunol 167: 976–986Google Scholar
  130. 130.
    Giles KM, Ross K, Rossi AG, Hotchin NA, Haslett C, Dransfield I (2001) Glucocorticoid augmentation of macrophage capacity for phagocytosis of apoptotic cells is associated with reduced p130Cas expression, loss of paxillin/pyk2 phosphorylation and high levels of active Rac. J Immunol 167: 976–986PubMedGoogle Scholar
  131. 131.
    Liu Y, Cousin JM, Hughes J, Van Damme J, Seckl JR, Haslett C, Dransfield I, Savill J, Rossi AG (1999) Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J Immunol 162: 3639–3646PubMedGoogle Scholar
  132. 132.
    Lauber K, Bohn E, Krober SM, Xiao YJ, Blumenthal SG, Lindemann RK, Marini P, Wiedig C, Zobywalski A, Baksh S et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113: 717–730PubMedGoogle Scholar
  133. 132a.
    Scannell M, Flanagan MD, de Stefani A, Wynne KJ, Cagney G, Godson C, Maderna P(2007) Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophil by macrophages. J Immunol 178: 4595–4605PubMedGoogle Scholar
  134. 133.
    Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR (2000) Cutting edge: Lipoxins rapidly stimulate non-phlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophage. J Immunol 164: 1663–1667PubMedGoogle Scholar
  135. 134.
    Mitchell S, Thomas G, Harvey K, Cottell D, Reville K, Berlasconi G, Petasis NA, Erwig L, Rees AJ, Savill J et al (2002) Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: Stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol 13: 2497–2507PubMedGoogle Scholar
  136. 135.
    Reville K, Crean JK, Vivers S, Dransfield I, Godson C (2006) Lipoxin A4 redistributes myosin IIA and Cdc42 in macrophages: implications for phagocytosis of apoptotic leukocytes. J Immunol 176: 1878–1888PubMedGoogle Scholar
  137. 136.
    Maderna P, Cottell DC, Berlasconi G, Petasis NA, Brady HR, Godson C (2002) Lipoxins induce actin reorganisation in monocytes and macrophages, but not in neutrophils: Differential involvement of Rho GTPases. Am J Pathol 160: 2275–2283PubMedGoogle Scholar
  138. 137.
    Fan X, Krahling S, Smith D, Williamson P, Schlegel RA (2004) Macrophage surface expression of annexins I and II in the phagocytosis of apoptotic lymphocytes. Mol Biol Cell 15: 2863–2872PubMedGoogle Scholar
  139. 138.
    Maderna P, Yona S, Perretti M, Godson C (2005) Modulation of phagocytosis of apoptotic neutrophils by supernatant from dexamethasone-treated macrophages and annexin-derived peptide Ac2-26. J Immunol 174: 3727–3733PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Paola Maderna
    • 1
  • Catherine Godson
    • 1
  1. 1.UCD School of Medicine and Medical Science, UCD Conway InstituteUniversity College DublinIreland

Personalised recommendations