Advertisement

Resolution of glomerular inflammation

  • David C. Kluth
  • Jeremy Hughes
Part of the Progress in Inflammation Research book series (PIR)

Abstract

A key role of the kidney is to eliminate many of the waste products generated by cellular metabolism and to maintain biochemical and acid base homeostasis of the organism. Kidneys contain spherical microvascular capillary networks called glomeruli that filter the plasma through a highly specialised filtration barrier (Fig. 1). Glomeruli are composed of three main cell types: mesangial cells, endothelial cells and glomerular epithelial cells (podocytes). The contractile mesangial cells are located within the centre of the glomerulus and support the delicate glomerular capillary network. The outermost podocytes are key components of the glomerular filtration barrier. The glomerular filtrate passes into Bowman’s space and the composition of this fluid is altered by tubular epithelial cells as it passes along the lumen of the nephrons. A more detailed description of renal physiology is outside the scope of the chapter but it should be noted that end stage renal failure is uniformly fatal if patients do not undergo dialysis or receive a functioning kidney transplant. It is therefore apparent that strategies that promote the resolution of glomerular inflammation would be predicted to be of great therapeutic benefit.

Keywords

Lupus Nephritis Mesangial Cell Glomerular Injury Crescentic Glomerulonephritis Mesangial Cell Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Remuzzi G, Benigni A, Remuzzi A (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116: 288–296PubMedCrossRefGoogle Scholar
  2. 2.
    Jefferson JA, Johnson RJ (1999) Experimental mesangial proliferative glomerulonephritis (the anti-Thy-1.1 model). J Nephrol 12: 297–307PubMedGoogle Scholar
  3. 3.
    Rovin BH, Schreiner GF (1991) Cell-mediated immunity in glomerular disease. Annu Rev Med 42: 25–33PubMedCrossRefGoogle Scholar
  4. 4.
    Holdsworth SR, Neale TJ, Wilson CB (1981) Abrogation of macrophage-dependent injury in experimental glomerulonephritis in the rabbit. Use of an antimacrophage serum. J Clin Invest 68: 686–698PubMedCrossRefGoogle Scholar
  5. 5.
    Ikezumi Y, Hurst LA, Masaki T, Atkins RC, Nikolic-Paterson DJ (2003) Adoptive transfer studies demonstrate that macrophages can induce proteinuria and mesangial cell proliferation. Kidney Int 63: 83–95PubMedCrossRefGoogle Scholar
  6. 6.
    Cailhier JF, Sawatzky DA, Kipari T, Houlberg K, Walbaum D, Watson S, Lang RA, Clay S, Kluth D, Savill J, Hughes J (2006) Resident pleural macrophages are key orchestrators of neutrophil recruitment in pleural inflammation. Am J Respir Crit Care Med 173: 540–547PubMedCrossRefGoogle Scholar
  7. 7.
    Duffield JS, Tipping PG, Kipari T, Cailhier JF, Clay S, Lang R, Bonventre JV, Hughes J (2005) Conditional ablation of macrophages halts progression of crescentic glomerulonephritis. Am J Pathol 167: 1207–1219PubMedGoogle Scholar
  8. 8.
    Tipping PG, Kitching AR (2005) Glomerulonephritis, Th1 and Th2: what’s new? Clin Exp Immunol 142: 207–215PubMedCrossRefGoogle Scholar
  9. 9.
    Schrijver G, Bogman MJ, Assmann KJ, de Waal RM, Robben HC, van Gasteren H, Koene RA, Schrijver G, Bogman MJ, Assmann KJ et al (1990) Anti-GBM nephritis in the mouse: Role of granulocytes in the heterologous phase. Kidney Int 38: 86–95PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson RJ, Klebanoff SJ, Ochi RF, Adler S, Baker P, Sparks L, Couser WG (1987) Participation of the myeloperoxidase-H2O2-halide system in immune complex nephritis. Kidney Int 32: 342–349PubMedCrossRefGoogle Scholar
  11. 11.
    Schrijver G, Schalkwijk J, Robben JC, Assmann KJ, Koene RA (1989) Antiglomerular basement membrane nephritis in beige mice. Deficiency of leukocytic neutral proteinases prevents the induction of albuminuria in the heterologous phase. J Exp Med 169: 1435–1448PubMedCrossRefGoogle Scholar
  12. 12.
    Jennette JC, Xiao H, Falk RJ (2006) Pathogenesis of vascular inflammation by antineutrophil cytoplasmic antibodies. J Am Soc Nephrol 17: 1235–1242PubMedCrossRefGoogle Scholar
  13. 13.
    Williams JM, Ben Smith A, Hewins P, Dove SK, Hughes P, McEwan R, Wakelam MJ, Savage CO (2003) Activation of the G(i) heterotrimeric G protein by ANCA IgG F(ab′)2 fragments is necessary but not sufficient to stimulate the recruitment of those downstream mediators used by intact ANCA IgG. J Am Soc Nephrol 14: 661–669PubMedCrossRefGoogle Scholar
  14. 14.
    Karkar AM, Koshino Y, Cashman SJ, Dash AC, Bonnefoy J, Meager A, Rees AJ (1992) Passive immunization against tumour necrosis factor-alpha (TNF-alpha) and IL-1 beta protects from LPS enhancing glomerular injury in nephrotoxic nephritis in rats. Clin Exp Immunol 90: 312–318PubMedCrossRefGoogle Scholar
  15. 15.
    Tomosugi NI, Cashman SJ, Hay H, Pusey CD, Evans DJ, Shaw A, Rees AJ (1989) Modulation of antibody-mediated glomerular injury in vivo by bacterial lipopolysaccharide, tumor necrosis factor, and IL-1. J Immunol 142: 3083–3090PubMedGoogle Scholar
  16. 16.
    Tang WW, Feng L, Vannice JL, Wilson CB (1994) Interleukin-1 receptor antagonist ameliorates experimental anti-glomerular basement membrane antibody-associated glomerulonephritis. J Clin Invest 93: 273–279PubMedCrossRefGoogle Scholar
  17. 17.
    Karkar AM, Smith J, Pusey CD (2001) Prevention and treatment of experimental crescentic glomerulonephritis by blocking tumour necrosis factor-alpha. Nephrol Dial Transplant 16: 518–524PubMedCrossRefGoogle Scholar
  18. 18.
    Khan SB, Cook HT, Bhangal G, Smith J, Tam FW, Pusey CD (2005) Antibody blockade of TNF-alpha reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int 67: 1812–1820PubMedCrossRefGoogle Scholar
  19. 19.
    Little MA, Bhangal G, Smyth CL, Nakada MT, Cook HT, Nourshargh S, Pusey CD (2006) Therapeutic effect of anti-TNF-alpha antibodies in an experimental model of anti-neutrophil cytoplasm antibody-associated systemic vasculitis. J Am Soc Nephrol 17: 160–169PubMedCrossRefGoogle Scholar
  20. 20.
    Noronha IL, Kruger C, Andrassy K, Ritz E, Waldherr R (1993) In situ production of TNF-alpha, IL-1beta and IL-2R in ANCA-positive glomerulonephritis. Kidney Int 43: 682–692PubMedCrossRefGoogle Scholar
  21. 21.
    Takemura T, Yoshioka K, Murakami K, Akano N, Okada M, Aya N, Maki S (1994) Cellular localization of inflammatory cytokines in human glomerulonephritis. Virchows Arch 424: 459–464PubMedCrossRefGoogle Scholar
  22. 22.
    Herrera-Esparza R, Barbosa-Cisneros O, Villalobos-Hurtado R, Avalos-Diaz E (1998) Renal expression of IL-6 and TNFalpha genes in lupus nephritis. Lupus 7: 154–158PubMedCrossRefGoogle Scholar
  23. 23.
    Taniguchi Y, Yorioka N, Oda H, Yamakido M (1996) Platelet-derived growth factor, interleukin (IL)-1 beta, IL-6R and tumor necrosis factor-alpha in IgA nephropathy. An immunohistochemical study. Nephron 74: 652–660PubMedCrossRefGoogle Scholar
  24. 24.
    Kim YS, Zheng S, Yang SH, Kim HL, Lim CS, Chae DW, Chun R, Lee JS, Kim S (2001) Differential expression of various cytokine and chemokine genes between proliferative and non-proliferative glomerulonephritides. Clin Nephrol 56: 199–206PubMedGoogle Scholar
  25. 25.
    Booth AD, Jayne DRW, Kharbanda RK, McEniery CM, Mackenzie IS, Brown J, Wilkinson IB (2004) Infliximab improves endothelial dysfunction in systemic vasculitis: A model of vascular inflammation. Circulation 109: 1718–1723PubMedCrossRefGoogle Scholar
  26. 26.
    Kitching AR, Tipping PG, Mutch DA, Huang XR, Holdsworth SR (1998) Interleukin-4 deficiency enhances Th1 responses and crescentic glomerulonephritis in mice. Kidney Int 53: 112–118PubMedCrossRefGoogle Scholar
  27. 27.
    Kitching AR, Holdsworth SR, Tipping PG (1999) IFN-gamma mediates crescent formation and cell-mediated immune injury in murine glomerulonephritis. J Am Soc Nephrol 10: 752–759PubMedGoogle Scholar
  28. 28.
    Huang XR, Tipping PG, Shuo L, Holdsworth SR (1997) Th1 responsiveness to nephritogenic antigens determines susceptibility to crescentic glomerulonephritis in mice. Kidney Int 51: 94–103PubMedCrossRefGoogle Scholar
  29. 29.
    Kitching AR, Tipping PG, Holdsworth SR (1999) IL-12 directs severe renal injury, crescent formation and Th1 responses in murine glomerulonephritis. Eur J Immunol 29: 1–10PubMedCrossRefGoogle Scholar
  30. 30.
    Kitching AR, Tipping PG, Kurimoto M, Holdsworth SR (2000) IL-18 has IL-12-independent effects in delayed-type hypersensitivity: studies in cell-mediated crescentic glomerulonephritis. J Immunol 165: 4649–4657PubMedGoogle Scholar
  31. 31.
    Haas C, Ryffel B, Le Hir M (1997) IFN-gamma is essential for the development of autoimmune glomerulonephritis in MRL/lpr mice. J Immunol 158: 5484–5491PubMedGoogle Scholar
  32. 32.
    Kikawada E, Lenda DM, Kelley VR (2003) IL-12 deficiency in MRL-Fas(lpr) mice delays nephritis and intrarenal IFN-gamma expression, and diminishes systemic pathology. J Immunol 170: 3915–3925PubMedGoogle Scholar
  33. 33.
    Cattell V, Cook T, Moncada S (1990) Glomeruli synthesize nitrite in experimental nephrotoxic nephritis. Kidney Int 38: 1056–1060PubMedCrossRefGoogle Scholar
  34. 34.
    Cattell V, Largen P, de Heer E, Cook T (1991) Glomeruli synthesize nitrite in active Heymann nephritis; the source is infiltrating macrophages. Kidney Int 40: 847–851PubMedCrossRefGoogle Scholar
  35. 35.
    Waddington S, Cook HT, Reaveley D, Jansen A, Cattell V (1996) L-Arginine depletion inhibits glomerular nitric oxide synthesis and exacerbates rat nephrotoxic nephritis. Kidney Int 49: 1090–1096PubMedCrossRefGoogle Scholar
  36. 36.
    Ogawa D, Shikata K, Matsuda M, Okada S, Usui H, Wada J, Taniguchi N, Makino H (2002) Protective effect of a novel and selective inhibitor of inducible nitric oxide synthase on experimental crescentic glomerulonephritis in WKY rats. Nephrol Dial Transplant 17: 2117–2121PubMedCrossRefGoogle Scholar
  37. 37.
    Cattell V, Lianos E, Largen P, Cook T (1993) Glomerular NO synthase activity in mesangial cell immune injury. Exp Nephrol 1: 36–40PubMedGoogle Scholar
  38. 38.
    Duffield JS, Erwig LP, Wei X, Liew FY, Rees AJ, Savill JS (2000) Activated macrophages direct apoptosis and suppress mitosis of mesangial cells. J Immunol 164: 2110–2119PubMedGoogle Scholar
  39. 39.
    Kipari T, Cailhier JF, Ferenbach D, Watson S, Houlberg K, Walbaum D, Clay S, Savill J, Hughes J (2006) Nitric oxide is an important mediator of renal tubular epithelial cell death in vitro and in murine experimental hydronephrosis. Am J Pathol 169: 388–399PubMedCrossRefGoogle Scholar
  40. 40.
    Carrithers MD, Visintin I, Kang SJ, Janeway CA Jr (2000) Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 123: 1092–1101PubMedCrossRefGoogle Scholar
  41. 41.
    Hickey MJ, Kanwar S, McCafferty DM, Granger DN, Eppihimer MJ, Kubes P (1999) Varying roles of E-selectin and P-selectin in different microvascular beds in response to antigen. J Immunol 162: 1137–1143PubMedGoogle Scholar
  42. 42.
    De Vriese AS, Endlich K, Elger M, Lameire NH, Atkins RC, Lan HY, Rupin A, Kriz W, Steinhausen MW (1999) The role of selectins in glomerular leukocyte recruitment in rat anti-glomerular basement membrane glomerulonephritis. J Am Soc Nephrol 10: 2510–2517PubMedGoogle Scholar
  43. 43.
    Rosenkranz AR, Mendrick DL, Cotran RS, Mayadas TN (1999) P-selectin deficiency exacerbates experimental glomerulonephritis: A protective role for endothelial P-selectin in inflammation. J Clin Invest 103: 649–659PubMedCrossRefGoogle Scholar
  44. 44.
    Allen AR, McHale J, Smith J, Cook HT, Karkar A, Haskard DO, Lobb RR, Pusey CD (1999) Endothelial expression of VCAM-1 in experimental crescentic nephritis and effect of antibodies to very late antigen-4 or VCAM-1 on glomerular injury. J Immunol 162: 5519–5527PubMedGoogle Scholar
  45. 45.
    Khan SB, Allen AR, Bhangal G, Smith J, Lobb RR, Cook HT, Pusey CD (2003) Blocking VLA-4 prevents progression of experimental crescentic glomerulonephritis. Nephron Exp Nephrol 95: e100–e110PubMedCrossRefGoogle Scholar
  46. 46.
    Kootstra CJ, Van Der Giezen DM, Van Krieken JH, de Heer E, Bruijn JA (1997) Effective treatment of experimental lupus nephritis by combined administration of anti-CD11a and anti-CD54 antibodies. Clin Exp Immunol 108: 324–332PubMedCrossRefGoogle Scholar
  47. 47.
    Janssen U, Ostendorf T, Gaertner S, Eitner F, Hedrich HJ, Assmann KJ, Floege J (1998) Improved survival and amelioration of nephrotoxic nephritis in intercellular adhesion molecule-1 knockout mice. J Am Soc Nephrol 9: 1805–1814PubMedGoogle Scholar
  48. 48.
    Tang T, Rosenkranz A, Assmann KJM, Goodman MJ, Gutierrez-Ramos JC, Carroll MC, Cotran RS, Mayadas TN (1997) A role for Mac-1 (CDIIb/CD18) in immune complex-stimulated neutrophil function in vivo: Mac-1 deficiency abrogates sustained Fcgamma receptor-dependent neutrophil adhesion and complement-dependent proteinuria in acute glomerulonephritis. J Exp Med 186: 1853–1863PubMedCrossRefGoogle Scholar
  49. 49.
    Weber KS, von Hundelshausen P, Clark-Lewis I, Weber PC, Weber C (1999) Differential immobilization and hierarchical involvement of chemokines in monocyte arrest and transmigration on inflamed endothelium in shear flow. Eur J Immunol 29: 700–712PubMedCrossRefGoogle Scholar
  50. 50.
    Zernecke A, Weber KS, Erwig LP, Kluth DC, Schropel B, Rees AJ, Weber C (2001) Combinatorial model of chemokine involvement in glomerular monocyte infiltration. J Immunol 166: 5755–5762PubMedGoogle Scholar
  51. 51.
    Inoue A, Hasegawa H, Kohno M, Ito MR, Terada M, Imai T, Yoshie O, Nose M, Fujita S (2005) Antagonist of fractalkine (CX3CL1) delays the initiation and ameliorates the progression of lupus nephritis in MRL/lpr mice. Arthritis Rheum 52: 1522–1533PubMedCrossRefGoogle Scholar
  52. 52.
    Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257PubMedGoogle Scholar
  53. 53.
    Watson S, Cailhier JF, Hughes J, Savill J (2006) Apoptosis and glomerulonephritis. Curr Dir Autoimmun 9: 188–204PubMedGoogle Scholar
  54. 54.
    Abboud HE (1995) Role of platelet-derived growth factor in renal injury. Annu Rev Physiol 57: 297–309PubMedCrossRefGoogle Scholar
  55. 55.
    Floege J, Eng E, Young BA, Alpers CE, Barrett TB, Bowen-Pope DF, Johnson RJ (1993) Infusion of platelet-derived growth factor or basic fibroblast growth factor induces selective glomerular mesangial cell proliferation and matrix accumulation in rats. J Clin Invest 92: 2952–2962PubMedCrossRefGoogle Scholar
  56. 56.
    Floege J, Ostendorf T, Janssen U, Burg M, Radeke HH, Vargeese C, Gill SC, Green LS, Janjic N (1999) Novel approach to specific growth factor inhibition in vivo: Antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am J Pathol 154: 169–179PubMedGoogle Scholar
  57. 57.
    Baker AJ, Mooney A, Hughes J, Lombardi D, Johnson RJ, Savill J (1994) Mesangial cell apoptosis: the major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. J Clin Invest 94: 2105–2116PubMedCrossRefGoogle Scholar
  58. 58.
    Sugiyama H, Savill JS, Kitamura M, Zhao L, Stylianou E (1999) Selective sensitization to tumor necrosis factor-alpha-induced apoptosis by blockade of NF-kappaB in primary glomerular mesangial cells. J Biol Chem 274: 19532–19537PubMedCrossRefGoogle Scholar
  59. 59.
    Maruyama K, Kashihara N, Yamasaki Y, Sato M, Sugiyama H, Okamoto K, Maeshima Y, Odawara M, Sasaki J, Makino H (2001) Methylprednisolone accelerates the resolution of glomerulonephritis by sensitizing mesangial cells to apoptosis. Exp Nephrol 9: 317–326PubMedCrossRefGoogle Scholar
  60. 60.
    Mooney A, Jackson K, Bacon R, Streuli C, Edwards G, Bassuk J, Savill J (1999) Type IV collagen and laminin regulate glomerular mesangial cell susceptibility to apoptosis via beta1 integrin-mediated survival signals. Am J Pathol 155: 599–606PubMedGoogle Scholar
  61. 61.
    Kluth DC, Erwig LP, Rees AJ (2004) Multiple facets of macrophages in renal injury. Kidney Int 66: 542–557PubMedCrossRefGoogle Scholar
  62. 62.
    Westerhuis R, van Straaten SC, van Dixhoorn MG, van Rooijen N, Verhagen NA, Dijkstra CD, de Heer E, Daha MR (2000) Distinctive roles of neutrophils and monocytes in anti-Thy-1 nephritis. Am J Pathol 156: 303–310PubMedGoogle Scholar
  63. 63.
    Zheng L, Sinniah R, Hong Hsu S (2006) Renal cell apoptosis and proliferation may be linked to nuclear factor-kappaB activation and expression of inducible nitric oxide synthase in patients with lupus nephritis. Hum Pathol 37: 637–647PubMedCrossRefGoogle Scholar
  64. 64.
    Maharaj ASR, Saint-Geniez M, Maldonado AE, D’Amore PA (2006) Vascular endothelial growth factor localization in the adult. Am J Pathol 168: 639–648PubMedCrossRefGoogle Scholar
  65. 65.
    Shankland SJ (2006) The podocyte’s response to injury: Role in proteinuria and glomerulosclerosis. Kidney Int 69: 2131–2147PubMedCrossRefGoogle Scholar
  66. 66.
    Ortmann J, Amann K, Brandes RP, Kretzler M, Munter K, Parekh N, Traupe T, Lange M, Lattmann T, Barton M (2004) Role of podocytes for reversal of glomerulosclerosis and proteinuria in the aging kidney after endothelin inhibition. Hypertension 44: 974–98PubMedCrossRefGoogle Scholar
  67. 67.
    Qiu LQ, Sinniah R, Hong Hsu S (2004) Downregulation of Bcl-2 by podocytes is associated with progressive glomerular injury and clinical indices of poor renal prognosis in human IgA nephropathy. J Am Soc Nephrol 15: 79–90PubMedCrossRefGoogle Scholar
  68. 68.
    Woywodt A, Streiber F, de Groot K, Regelsberger H, Haller H, Haubitz M (2003) Circulating endothelial cells as markers for ANCA-associated small-vessel vasculitis. Lancet 361: 206–210PubMedCrossRefGoogle Scholar
  69. 69.
    Kelly DJ, Hepper C, Wu LL, Cox AJ, Gilbert RE (2003) Vascular endothelial growth factor expression and glomerular endothelial cell loss in the remnant kidney model. Nephrol Dial Transplant 18: 1286–1292PubMedCrossRefGoogle Scholar
  70. 70.
    Messmer UK, Winkel G, Briner VA, Pfeilschifter J (2000) Suppression of apoptosis by glucocorticoids in glomerular endothelial cells: Effects on proapoptotic pathways. Br J Pharmacol 129: 1673–1683PubMedCrossRefGoogle Scholar
  71. 71.
    Iruela-Arispe L, Gordon K, Hugo C, Duijvestijn AM, Claffey KP, Reilly M, Couser WG, Alpers CE, Johnson RJ (1995) Participation of glomerular endothelial cells in the capillary repair of glomerulonephritis. Am J Pathol 147: 1715–1727PubMedGoogle Scholar
  72. 72.
    Masuda Y, Shimizu A, Mori T, Ishiwata T, Kitamura H, Ohashi R, Ishizaki M, Asano G, Sugisaki Y, Yamanaka N (2001) Vascular endothelial growth factor enhances glomerular capillary repair and accelerates resolution of experimentally induced glomerulonephritis. Am J Pathol 159: 599–608PubMedGoogle Scholar
  73. 73.
    Hugo C, Shankland SJ, Bowen-Pope DF, Couser WG, Johnson RJ (1997) Extraglomerular origin of the mesangial cell after injury. A new role of the juxtaglomerular apparatus. J Clin Invest 100: 786–794PubMedCrossRefGoogle Scholar
  74. 74.
    Ricardo SD, Deane JA (2005) Adult stem cells in renal injury and repair. Nephrology 10: 276–282PubMedCrossRefGoogle Scholar
  75. 75.
    Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115: 1743–1755PubMedCrossRefGoogle Scholar
  76. 76.
    Duffield JS, Bonventre JV (2005) Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney Int 68: 1956–1961PubMedCrossRefGoogle Scholar
  77. 77.
    Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R (2006) Bone-marrowderived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci USA 103: 7321–7326PubMedCrossRefGoogle Scholar
  78. 78.
    Oliver JA (2004) Adult renal stem cells and renal repair. Curr Opin Nephrol Hypertens 13: 17–22PubMedCrossRefGoogle Scholar
  79. 79.
    Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, Camussi G (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166: 545–555PubMedGoogle Scholar
  80. 80.
    Anders HJ, Vielhauer V, Kretzler M, Cohen CD, Segerer S, Luckow B, Weller L, Grone HJ, Schlondorff D (2001) Chemokine and chemokine receptor expression during initiation and resolution of immune complex glomerulonephritis. J Am Soc Nephrol 12: 919–931PubMedGoogle Scholar
  81. 81.
    Hughes J, Liu Y, van Damme J, Savill J (1997) Human glomerular mesangial cell phagocytosis of apoptotic neutrophils: Mediation by a novel CD36-independent vitronectin receptor/thrombospondin recognition mechanism that is uncoupled from chemokine secretion. J Immunol 158: 4389–4397PubMedGoogle Scholar
  82. 82.
    Harrison DJ (1988) Cell death in the diseased glomerulus. Histopathology 12: 679–683PubMedCrossRefGoogle Scholar
  83. 83.
    Lan HY, Nikolic-Paterson DJ, Atkins RC (1993) Trafficking of inflammatory macrophages from the kidney to draining lymph nodes during experimental glomerulonephritis. Clin Exp Immunol 92: 336–341PubMedCrossRefGoogle Scholar
  84. 84.
    Bellingan GJ, Caldwell H, Howie SE, Dransfield I, Haslett C (1996) In vivo fate of the inflammatory macrophage during the resolution of inflammation: Inflammatory macrophages do not die locally, but emigrate to the draining lymph nodes. J Immunol 157: 2577–2585PubMedGoogle Scholar
  85. 85.
    van Lent PLEM, Licht R, Dijkman H, Holthuysen AEM, Berden JHM, van den Berg WB (2001) Uptake of apoptotic leukocytes by synovial lining macrophages inhibits immune complex-mediated arthritis. J Leukoc Biol 70: 708–714PubMedGoogle Scholar
  86. 86.
    Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: Clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2: 965–975PubMedCrossRefGoogle Scholar
  87. 87.
    Robson MG, Cook HT, Botto M, Taylor PR, Busso N, Salvi R, Pusey CD, Walport MJ, Davies KA (2001) Accelerated nephrotoxic nephritis is exacerbated in C1q-deficient mice. J Immunol 166: 6820–6828PubMedGoogle Scholar
  88. 88.
    Tas SW, Quartier P, Botto M, Fossati-Jimack L (2006) Macrophages from patients with SLE and rheumatoid arthritis have defective adhesion in vitro, while only SLE macrophages have impaired uptake of apoptotic cells. Ann Rheum Dis 65: 216–221PubMedCrossRefGoogle Scholar
  89. 89.
    Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD, Ruoslahti E (1992) Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 360: 361–364PubMedCrossRefGoogle Scholar
  90. 90.
    Zeisberg M, Muller GA, Kalluri R (2004) Are there endogenous molecules that protect kidneys from injury? The case for bone morphogenic protein-7 (BMP-7). Nephrol Dial Transplant 19: 759–761PubMedCrossRefGoogle Scholar
  91. 91.
    Zeisberg M, Shah AA, Kalluri R (2005) Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem 280: 8094–8100PubMedCrossRefGoogle Scholar
  92. 92.
    Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9: 964–968PubMedCrossRefGoogle Scholar
  93. 93.
    Zeisberg M, Bottiglio C, Kumar N, Maeshima Y, Strutz F, Muller GA, Kalluri R (2003) Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol 285: F1060–F1067PubMedGoogle Scholar
  94. 94.
    Erwig LP, Kluth DC, Walsh GM, Rees AJ (1998) Initial cytokine exposure determines macrophage function and renders them unresponsive to other cytokines. J Immunol 161: 1983–1988PubMedGoogle Scholar
  95. 95.
    Timoshanko JR, Holdsworth SR, Kitching AR, Tipping PG (2002) IFN-gamma production by intrinsic renal cells and bone marrow-derived cells is required for full expression of crescentic glomerulonephritis in mice. J Immunol 168: 4135–4141PubMedGoogle Scholar
  96. 96.
    Timoshanko JR, Kitching AR, Holdsworth SR, Tipping PG (2001) Interleukin-12 from intrinsic cells is an effector of renal injury in crescentic glomerulonephritis. J Am Soc Nephrol 12: 464–471PubMedGoogle Scholar
  97. 97.
    Saleem S, Dai Z, Coelho SN, Konieczny BT, Assmann KJ, Baddoura FK, Lakkis FG (1998) IL-4 is an endogenous inhibitor of neutrophil influx and subsequent pathology in acute antibody-mediated inflammation. J Immunol 160: 979–984PubMedGoogle Scholar
  98. 98.
    Cook HT, Singh SJ, Wembridge DE, Smith J, Tam FW, Pusey CD (1999) Interleukin-4 ameliorates crescentic glomerulonephritis in Wistar Kyoto rats. Kidney Int 55: 1319–1326PubMedCrossRefGoogle Scholar
  99. 99.
    Kitching AR, Tipping PG, Huang XR, Mutch DA, Holdsworth SR (1997) Interleukin-4 and interleukin-10 attenuate established crescentic glomerulonephritis in mice. Kidney Int 52: 52–59PubMedCrossRefGoogle Scholar
  100. 100.
    Tam FW, Smith J, Karkar AM, Pusey CD, Rees AJ (1997) Interleukin-4 ameliorates experimental glomerulonephritis and up-regulates glomerular gene expression of IL-1 decoy receptor. Kidney Int 52: 1224–1231PubMedCrossRefGoogle Scholar
  101. 101.
    Tipping PG, Kitching AR, Huang XR, Mutch DA, Holdsworth SR (1997) Immune modulation with interleukin-4 and interleukin-10 prevents crescent formation and glomerular injury in experimental glomerulonephritis. Eur J Immunol 27: 530–537PubMedCrossRefGoogle Scholar
  102. 102.
    Yin Z, Bahtiyar G, Zhang N, Liu L, Zhu P, Robert ME, McNiff J, Madaio MP, Craft J (2002) IL-10 regulates murine lupus. J Immunol 169: 2148–2155PubMedGoogle Scholar
  103. 103.
    El Shemi AG, Fujinaka H, Matsuki A, Kamiie J, Kovalenko P, Qu Z, Bilim V, Nishimoto G, Yaoita E, Yoshida Y et al (2004) Suppression of experimental crescentic glomerulonephritis by interleukin-10 gene transfer. Kidney Int 65: 1280–1289PubMedCrossRefGoogle Scholar
  104. 104.
    Mu W, Ouyang X, Agarwal A, Zhang L, Long DA, Cruz PE, Roncal CA, Glushakova OY, Chiodo VA, Atkinson MA et al (2005) IL-10 suppresses chemokines, inflammation, and fibrosis in a model of chronic renal disease. J Am Soc Nephrol 16: 3651–3660PubMedCrossRefGoogle Scholar
  105. 105.
    Reynolds J, Tam FW, Chandraker A, Smith J, Karkar AM, Cross J, Peach R, Sayegh MH, Pusey CD (2000) CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J Clin Invest 105: 643–651PubMedCrossRefGoogle Scholar
  106. 106.
    Okano K, Nitta K, Ogawa S, Horita S, Habiro K, Nihei H, Abe R (2004) Effects of double blockade of CD28 and inducible-costimulator signaling on anti-glomerular basement membrane glomerulonephritis. J Lab Clin Med 144: 183–192PubMedCrossRefGoogle Scholar
  107. 107.
    Odobasic D, Kitching AR, Tipping PG, Holdsworth SR (2005) CD80 and CD86 costimulatory molecules regulate crescentic glomerulonephritis by different mechanisms. Kidney Int 68: 584–594PubMedCrossRefGoogle Scholar
  108. 108.
    Iwai H, Abe M, Hirose S, Tsushima F, Tezuka K, Akiba H, Yagita H, Okumura K, Kohsaka H, Miyasaka N, Azuma M (2003) Involvement of inducible costimulator-B7 homologous protein costimulatory pathway in murine lupus nephritis. J Immunol 171: 2848–2854PubMedGoogle Scholar
  109. 109.
    Fontenot JD, Rudensky AY (2005) A well adapted regulatory contrivance: Regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6: 331–337PubMedCrossRefGoogle Scholar
  110. 110.
    Wolf D, Hochegger K, Wolf AM, Rumpold HF, Gastl G, Tilg H, Mayer G, Gunsilius E, Rosenkranz AR (2005) CD4+CD25+ regulatory T cells inhibit experimental antiglomerular basement membrane glomerulonephritis in mice. J Am Soc Nephrol 16: 1360–1370PubMedCrossRefGoogle Scholar
  111. 111.
    Isenberg DA (2006) B cell targeted therapies in autoimmune diseases. J Rheumatol (Suppl) 77: 24–28Google Scholar
  112. 112.
    Milovanceva-Popovska M, Kunter U, Ostendorf T, Petermann A, Rong S, Eitner F, Kerjaschki D, Barnett A, Floege J (2005) R-roscovitine (CYC202) alleviates renal cell proliferation in nephritis without aggravating podocyte injury. Kidney Int 67: 1362–1370PubMedCrossRefGoogle Scholar
  113. 113.
    Monkawa T, Pippin J, Yo Y, Kopp JB, Alpers CE, Shankland SJ (2006) The cyclindependent kinase inhibitor p21 limits murine mesangial proliferative glomerulonephritis. Nephron Exp Nephrol 102: e8–18PubMedCrossRefGoogle Scholar
  114. 114.
    Wilson HM, Kluth DC (2003) Targeting genetically modified macrophages to the glomerulus. Nephron Exp Nephrol 94: e113–e118PubMedCrossRefGoogle Scholar
  115. 115.
    Yamagishi H, Yokoo T, Imasawa T, Mitarai T, Kawamura T, Utsunomiya Y (2001) Genetically modified bone marrow-derived vehicle cells site specifically deliver an anti-inflammatory cytokine to inflamed interstitium of obstructive nephropathy. J Immunol 166: 609–616PubMedGoogle Scholar
  116. 116.
    Yokoo T, Ohashi T, Utsunomiya Y, Kojima H, Imasawa T, Kogure T, Hisada Y, Okabe M, Eto Y, Kawamura T, Hosoya T (1999) Prophylaxis of antibody-induced acute glomerulonephritis with genetically modified bone marrow-derived vehicle cells. Hum Gene Ther 10: 2673–2678PubMedCrossRefGoogle Scholar
  117. 117.
    Kluth DC, Ainslie CV, Pearce WP, Clarke D, Anegon I, Rees AJ (2001) Macrophages transfected with adenovirus to express IL-4 reduce inflammation in experimental glomerulonephritis. J Immunol 166: 4728–4736PubMedGoogle Scholar
  118. 118.
    Wilson HM, Stewart K, Brown PAJ, Anegon I, Chettibi S, Rees AJ, Kluth DC (2002) Bone marrow derived macrophages (BMDM) genetically modified to produce IL-10 reduce injury in experimental glomerulonephritis. Mol Ther 6: 710–717PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • David C. Kluth
    • 1
  • Jeremy Hughes
    • 1
  1. 1.MRC Centre for Inflammation ResearchUniversity of Edinburgh, Queens Medical Research CentreEdinburghUK

Personalised recommendations