Carotenoids pp 99-114 | Cite as

Genetic Manipulation of Carotenoid Content and Composition in Crop Plants

  • Paul D. Fraser
  • Peter M. Bramley
Part of the Carotenoids book series (CAROT, volume 5)


Over the past 50 years, modern plant breeding has focused on improved productivity, through increased yield and adaptation to biotic and abiotic stress. In comparison, the enhancement of quality traits such as improved nutritional content and aesthetic colour has been neglected. Now, however, consumers increasingly demand improved food quality and safety and, as a consequence, plant breeding has been forced to address these issues. One example of this is to enhance the levels and types of carotenoids in fruits and vegetables, not only for aesthetic purposes, but also because of the increasing evidence that fruit and vegetables containing high levels of dietary carotenoids are associated with health benefits [1]; such crops are sometimes categorized as ‘functional foods’ [2]. The value of carotenoids to human health is supported by a significant body of evidence, as discussed in later chapters in this Volume, much of it based on associations between dietary carotenoids and risk of the onset of chronic disease states. β-Carotene (3) is the most potent precursor of vitamin A, deficiency of which will cause blindness and eventually death [3]. The xanthophylls zeaxanthin (119) and lutein (133) have been associated with reduced risk of macular degeneration [4], whilst lycopene (31) is associated with the reduction of certain cancers such as prostate cancer [5]. Astaxanthin (404–406) has more recently received attention as a carotenoid that may confer preventative effects against cardiovascular disease [6]. The most advantageous effects of carotenoids on health occur when they are eaten in a fruit or vegetable matrix [7], presumably because of synergistic effects with the other healthpromoting phytochemicals present in the food.


Genetically Modify Tomato Fruit Carotenoid Content Ripe Fruit Carotenoid Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. D. Fraser and P. M. Bramley, Progr. Lipid Res., 43, 228 (2004).CrossRefGoogle Scholar
  2. [2]
    I. Johnson and G. Williamson, Phytochemical Functional Foods, Woodhead Publishing, Cambridge (2003).Google Scholar
  3. [3]
    J. H. Humphrey, K. P. West Jr and A. V. Sommer, WHO Bulletin, 70, 225 (1992).Google Scholar
  4. [4]
    J. M. Seddon, U. A. Ajami, R. D. Sperato, R. H iller, N. Blair, T. C. Burton, M. D. Farher, E. S. Gragoudas, J. Haller, D. T. Miller, L. A. Yannazzi and W. Willett, J. Am. Med. Assoc., 272, 1413 (1994).CrossRefGoogle Scholar
  5. [5]
    E. Giovannucci, J. Natl. Cancer Inst., 91, 317 (1999).CrossRefGoogle Scholar
  6. [6]
    G. Hussein, H. Goto, S. Oda, U. Sankawa, K. Matsumoto and H. Watanabe, Biol. Pharm. Bull., 29, 684 (2006).CrossRefGoogle Scholar
  7. [7]
    R. H. Liu, J. Nutr., 134, 3479C (2004).Google Scholar
  8. [8]
    T. J. Key, A. Schatzkin, W. C. Willett, N. E. Allen, E. A. Spencer and R. C. Travis, Public Health Nutr., 7, 187(2004).CrossRefGoogle Scholar
  9. [9]
    M. A. Grusak and D. DellaPenna, Annu. Rev. Plant Physiol. PlantMol. Biol., 50, 133 (1999).CrossRefGoogle Scholar
  10. [10]
    I. Potrykus, Plant Physiol., 125, 1157 (2001).CrossRefGoogle Scholar
  11. [11]
    G. I. Frengova, E. D. Simova and D. M. Beshkova, Z. Naturforsch. C., 61, 571 (2006).Google Scholar
  12. [12]
    G. H. Toenniessen, J. Nutr., 132, 2493S (2002).Google Scholar
  13. [13]
    Y-S. Liu, A. Gur, G Ronen, M. Causse, R. Damidaux, M. Buret, J. Hirschberg and D. Zamir, Plant Biotech. J., 1, 195 (2003).CrossRefGoogle Scholar
  14. [14]
    G. P. Soressi, Rep. Tomato Genet. Crop, 25, 21 (1975).Google Scholar
  15. [15]
    N. Menda, Y. Semel, D. Peled, Y. Eshed and D. Zamir, Plant J., 38, 861 (2004).CrossRefGoogle Scholar
  16. [16]
    A. Gur, Y. Semel, A. Cahaner and D. Zamir, Trends Plant Sci., 9, 107 (2004).CrossRefGoogle Scholar
  17. [17]
    P. K. Burkhardt, P. Beyer, J. Wunn, A. Kloti, G. A. Armstrong, M. Schledz, J. von Lintig and I. Potrykus, Plant J., 11, 1071 (1997).CrossRefGoogle Scholar
  18. [18]
    X. Ye, S. Al-Babili, A. Klotz, J. Zhang, P. Lucca, P. Beyer and I. Potrykus, Science, 287, 303 (2000).CrossRefGoogle Scholar
  19. [19]
    K. Datta, N. Baiskh, N. Oliva, L. Torriz, E. Abrigo, J. Tan, M. Rai, S. Rehana, S. Al-Babili, P. Beyer, I. Potrykus and S. Datta, Plant Biotech. J., 1, 81 (2003).CrossRefGoogle Scholar
  20. [20]
    S. Al-Babili, T. T. C. Hoa and P. Schaub, J. Exp. Bot., 57, 1007 (2006).CrossRefGoogle Scholar
  21. [21]
    C. R. Bird, J. A. Ray, J. D. Fletcher, J. M. Boniwell, A. S. Bird, C. Teulieres, I. Blain, P. M. Bramley and W. Schuch, BioTechnol, 9, 635 (1991).CrossRefGoogle Scholar
  22. [22]
    S. Romer, P. D. Fraser, J. Kiano, C. A. Shipton, N. Misawa, W. Schuch and P. M. Bramley, Nature Biotech., 18, 666 (2000).CrossRefGoogle Scholar
  23. [23]
    P. D. Fraser, S. Römer, C. A. Shipton, P. B. Mills, J. W. Kiano, N. Misawa, R. G. Drake, W. Schuch and P. M. Bramley, Proc. Natl. Acad. Sci. USA, 99, 1092 (2002).CrossRefGoogle Scholar
  24. [24]
    M. R. Truesdale, Ph. O. Thesis, University of London, (1994).Google Scholar
  25. [25]
    R. A. Mehta, T. Cassol, N. Li, A. K. Handa and A. K. Mattoo, Nature Biotech. 20, 613 (2002).Google Scholar
  26. [26]
    C. Rosati, R. Aquilani, S. Dharmapuri, P. Pallara, C. Marusic, R. Tavazza, F. Bouvier, B. Camara and G. Giuliano, Plant J., 24, 413 (2000).CrossRefGoogle Scholar
  27. [27]
    S. Dharmapuri, C. Rosati, P. Pallara, R. Aquilani, F. Bouvier, B. Camara and G. Giuliano, FEBS Lett., 519, 30 (2002).Google Scholar
  28. [28]
    L. Ralley, E. M. A. Enfissi, N. Misawa, W. Schuch, P. M. Bramley and P. D. Fraser, Plant J., 39, 477 (2004).CrossRefGoogle Scholar
  29. [29]
    L. Giliberto, G. Perrotta, P. Pallara, J. L. Weller, P. D. Fraser, P. M. Bramley, A. Fiore, M. Tavazza and G. Giuliano, Plant Physiol., 137, 199 (2005).CrossRefGoogle Scholar
  30. [30]
    E. M. A. Enfissi, P. D. Fraser, L.M. Lois, A. Boronat, W. Schuch and P. M. Bramley, Plant Biotech. J., 3, 17 (2005).CrossRefGoogle Scholar
  31. [31]
    G. R. Davuluri, A. van Tuinen, P. D. Fraser, A. Manfredonia, R. Newman, D. Burgess, D. A. Brummell, S. R. King, J. Palys, J. Uhlig, P. M. Bramley, H. M. J. Pennings and C. Bowler, Nature Biotech., 23, 890 (2005).CrossRefGoogle Scholar
  32. [32]
    C. K. Shewmaker, J. A. Sheehy, M. Daley, S. Colburn and D. Y. Ke, Plant J., 20, 401 (1999).CrossRefGoogle Scholar
  33. [33]
    R. Hauptmann, W. H. Eschenfeldt, J. English and F. L. Brinkhaus, US Patent 5618988 (1997).Google Scholar
  34. [34]
    S. Römer, J. Lübeck, F. Kauder, S. Steiger, C. Adomat and G. Sandmann, Metabol. Eng., 4, 263 (2002).CrossRefGoogle Scholar
  35. [35]
    L. J. M. Ducreux, W. L. Morris, P. E. Hedley, T. Shepherd, H. V. Davies, S. Millam and M. A. Taylor, J. Exp. Bot., 56, 81 (2005).Google Scholar
  36. [36]
    W. L. Morris, L. J. M. Ducreux, P. Hedden, S. Millam and M. A. Taylor, J. Exp. Bot., 57, 3007 (2006).CrossRefGoogle Scholar
  37. [37]
    G. Diretto, R. Tavazza, R. Welsch, D. Pizzichini, F. Mourgues, V. Papacchioli, P. Beyer and G. Giuliano, BMC Plant Biol., 6, 13 (2006).CrossRefGoogle Scholar
  38. [38]
    W. L. Morris, L. J. M. Ducreux, P. D. Fraser, S. Millam and M. A. Taylor, Metabol. Eng., 8, 253 (2006).CrossRefGoogle Scholar
  39. [39]
    T. Gerjets and G. Sandmann, J. Exp. Bot., 57, 3639 (2006).CrossRefGoogle Scholar
  40. [40]
    G. Diretto, S. Al-Babili, R. Tavazza, V. Papacchioli, P. Beyer and G. Giuliano, PLOS One, 4, c350 (2007).CrossRefGoogle Scholar
  41. [41 ]
    G. Diretto, R. Welsch, R. Tavazza, F. Mourgues, D. Pizzichini, P. Beyer and G. Giuliano, BMC Plant Biol., 7, 11 (2007).CrossRefGoogle Scholar
  42. [42]
    P. M. Bramley, in Plant Genetic Engineering (ed. R. P. Singh and P. K. Jaiwal), Vol. 1, p. 229, Sci. Tech. Pub., LLC, USA (2003).Google Scholar
  43. [43]
    K. M. Davies, Mutation Research, 622, 122 (2007).Google Scholar
  44. [44]
    G. Sandmann, S. Romer and P. D. Fraser, Metabol. Eng., 8, 291 (2006).CrossRefGoogle Scholar
  45. [45]
    D. Wurbs, S. Ruf and R. Bock, Plant J. 49, 276 (2007).Google Scholar
  46. [46]
    P. M. Bramley, J. Exp. Bot., 53, 2107 (2002).CrossRefGoogle Scholar
  47. [47]
    P.D. Fraser, M. R. Truesdale, C. R. Bird, W. Schuch and P. M. Bramley, Plant Physiol., 105, 405 (1994).Google Scholar
  48. [48]
    L. M. Lois, M. Rodriguez-Coneepcion, F. Gallego, N. Campos and A. Boronat, Plant J., 22, 503 (2000).CrossRefGoogle Scholar
  49. [49]
    M. Rodriguez-Concepcion, I. Ahamada, E. Diez-Juez, S. Sauret-Gueto, L. M. Lois, F. Gallego, L. Carre tero-Paulet, N. Campos and A. Boronat, Plant J., 27, 213 (2001).CrossRefGoogle Scholar
  50. [50]
    R. G. Fray, A. Wallace, P. D. Fraser, D. Valero, P. Hedden, P. M. Bramley and D. Grierson, Plant J., 8, 693 (1995).CrossRefGoogle Scholar
  51. [51]
    R. G. Drake, C. R. Bird and W. Schuch, US Patent WO97/46690 (1996).Google Scholar
  52. [52]
    T. Isaacson, G. Ronen, D. Zamir and J. Hirschberg, Plant Cell, 14, 333 (2002).CrossRefGoogle Scholar
  53. [53]
    N. Telef, L Stammitti-Bert, A Mortain-Bertrand, M. Mauciurt, J.-P. Carde, D. Rolin and P. Gallusci, Plant Mol. Biol., 62, 453 (2006).CrossRefGoogle Scholar
  54. [54]
    P. J. Cookson, J. W. Kiano, C. A. Shipton, P. D. Fraser, S. Romer, W. Schuch, P. M. Bramley and K. A. Pyke, Planta, 217, 896 (2003).CrossRefGoogle Scholar
  55. [55]
    A. J. Simkin, J. Gaffe, J-P Alcaraz, J.-P. Carde, P. M. Bramley, P. D. Fraser and M. Kuntz, Phytochemistry, 68, 1545 (2007).CrossRefGoogle Scholar
  56. [56]
    M. E. Auldridge, D. R. McCarty and H. J. Klee, Curr. Opin. Plant Biol., (bd9), 315 (2006).Google Scholar
  57. [57]
    J. A. Payne, C. A. Shipton, S. Chaggar, R. M. Howells, M. J. Kennedy, G. Verson, S. Y. Wright, E. Hinchliffe, J. L. Adams, A. L. Silverstone and R. Drake, Nature Biotechnol., 23, 482 (2005).CrossRefGoogle Scholar
  58. [58]
    M. P. Ravanello, D. Ke, J. Alvarez, B. Huang and C. K. Shewmaker, Metabol. Eng., 5, 255 (2003)CrossRefGoogle Scholar
  59. [59]
    C. Zhu, S. Naqvi, J. Breitenbach, G. Sandmann, P. Christou and T. Capell, Carotenoid Sci., 12, 61 (2008).Google Scholar

Copyright information

© Birkhäuser Verlag Basel 2009

Authors and Affiliations

  • Paul D. Fraser
    • 1
  • Peter M. Bramley
    • 1
  1. 1.Centre for Systems and Synthetic Biology School of Biological SciencesRoyal Holloway University of LondonEgham SurreyUK

Personalised recommendations